Results 1 to 10 of about 48,546 (184)

Geometric properties of almost pure metric plastic pseudo-Riemannian manifolds [PDF]

open access: yesHeliyon
This paper investigates the geometric and structural properties of almost plastic pseudo-Riemannian manifolds, with a specific focus on three-dimensional cases.
Cagri Karaman   +3 more
doaj   +2 more sources

Geometric Inequalities for a Submanifold Equipped with Distributions

open access: yesMathematics, 2022
The article introduces invariants of a Riemannian manifold related to the mutual curvature of several pairwise orthogonal subspaces of a tangent bundle. In the case of one-dimensional subspaces, this curvature is equal to half the scalar curvature of the
Vladimir Rovenski
doaj   +1 more source

On the Geometry of the Riemannian Curvature Tensor of Nearly Trans-Sasakian Manifolds

open access: yesAxioms, 2023
This paper presents the results of fundamental research into the geometry of the Riemannian curvature tensor of nearly trans-Sasakian manifolds. The components of the Riemannian curvature tensor on the space of the associated G-structure are counted, and
Aligadzhi R. Rustanov
doaj   +1 more source

Tensor invariants of generalized Kenmotsu manifolds [PDF]

open access: yesE3S Web of Conferences, 2021
In this paper, we study the properties of generalized Kenmotsu manifolds, consider the second-order differential geometric invariants of the Riemannian curvature tensor of generalized Kenmotsu manifolds (by the symmetry properties of the Riemannian ...
Shihab Ali Abdul Al Majeed   +1 more
doaj   +1 more source

On the Geometry of Three-dimensional Pseudo-Riemannian Homogeneous Spaces. I [PDF]

open access: yesИзвестия Саратовского университета. Новая серия: Математика. Механика. Информатика, 2020
The problem of establishing links between the curvature and the topological structure of a manifold is one of the important problems of geometry. In general, the purpose of the research of manifolds of various types is rather complicated.
Natal’ya Pavlovna Mozhey
doaj   +1 more source

Weighted Ricci curvature in Riemann-Finsler geometry [PDF]

open access: yesAUT Journal of Mathematics and Computing, 2021
Ricci curvature is one of the important geometric quantities in Riemann-Finsler geometry. Together with the $S$-curvature, one can define a weighted Ricci curvature for a pair of Finsler metric and a volume form on a manifold.
Zhongmin Shen
doaj   +1 more source

On the Geometry of Three-dimensional Pseudo-Riemannian Homogeneous Spaces. II [PDF]

open access: yesИзвестия Саратовского университета. Новая серия: Математика. Механика. Информатика, 2020
The problem of establishing links between the curvature and the topological structure of a manifold is one of the important problems of the geometry. In general, the purpose of the research of manifolds of various types is rather complicated.
Mozhey, Natal’ya Pavlovna
doaj   +1 more source

Critical point equation on almost f-cosymplectic manifolds [PDF]

open access: yesArab Journal of Mathematical Sciences, 2023
Purpose – Besse first conjectured that the solution of the critical point equation (CPE) must be Einstein. The CPE conjecture on some other types of Riemannian manifolds, for instance, odd-dimensional Riemannian manifolds has considered by many geometers.
H. Aruna Kumara   +2 more
doaj   +1 more source

Slant Riemannian submersions from Sasakian manifolds

open access: yesArab Journal of Mathematical Sciences, 2016
We introduce and characterize slant Riemannian submersions from Sasakian manifolds onto Riemannian manifolds. We survey main results of slant Riemannian submersions defined on Sasakian manifolds.
I. Küpeli Erken, C. Murathan
doaj   +1 more source

Integral Formulas for Almost Product Manifolds and Foliations

open access: yesMathematics, 2022
Integral formulas are powerful tools used to obtain global results in geometry and analysis. The integral formulas for almost multi-product manifolds, foliations and multiply twisted products of Riemannian, metric-affine and sub-Riemannian manifolds, to ...
Vladimir Rovenski
doaj   +1 more source

Home - About - Disclaimer - Privacy