Results 201 to 210 of about 234,039 (316)
Stress testing ΛCDM with high-redshift galaxy candidates. [PDF]
Boylan-Kolchin M.
europepmc +1 more source
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du+11 more
wiley +1 more source
The Tully-Fisher relation and its implications for the halo density profile and self-interacting dark matter [PDF]
H. J. Mo, Shude Mao
openalex +1 more source
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan+9 more
wiley +1 more source
H2 dark matter in the galactic halo from EGRET
P. M. W. Kalberla+2 more
openalex +2 more sources
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source
Tunable Thermoshrinkable Hydrogels for 4D Fabrication of Cell‐Seeded Channels
A thermoresponsive polymer with methacrylate groups for photo‐cross‐linking, based on polyethylene glycol, N‐isopropylacrylamide, and 2‐hydroxyethyl acrylate is synthetized to yield hydrogels that shrink upon temperature increase. The new polymer enables the fabrication of cell‐laden perfusable channels with diameters below 200 µm by combining ...
Greta Di Marco+12 more
wiley +1 more source
High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk+7 more
wiley +1 more source