Results 121 to 130 of about 288,297 (331)

Graph Attention Neural Networks for Interpretable and Generalizable Prediction of Janus III–Vi Van Der Waals Heterostructures

open access: yesAdvanced Intelligent Discovery, EarlyView.
A crystal graph neural network based on the attention mechanism is proposed in this work. The model dynamically weights features through the attention mechanism, enabling precise prediction of properties of material from structural features. Here, taking Janus III–VI van der Waals heterostructures as a representative case, the properties have been ...
Yudong Shi   +7 more
wiley   +1 more source

Patient Identification and Tumor Identification Management: Quality Program in a Cancer Multicentric Clinical Data Warehouse [PDF]

open access: gold, 2023
Karine Pallier   +8 more
openalex   +1 more source

Accelerating Surface Composition Characterization of Thin‐Film Materials Libraries Using Multi‐Output Gaussian Process Regression

open access: yesAdvanced Intelligent Discovery, EarlyView.
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen   +2 more
wiley   +1 more source

CrossMatAgent: AI‐Assisted Design of Manufacturable Metamaterial Patterns via Multi‐Agent Generative Framework

open access: yesAdvanced Intelligent Discovery, EarlyView.
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian   +12 more
wiley   +1 more source

Limitations of Foundation Models in Energy Materials Simulations: A Case Study in Polyanion Sodium Cathode Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Several simulation techniques are used to explore static and dynamic behavior in polyanion sodium cathode materials. The study reveals that universal machine learning interatomic potentials (MLIPs) struggle with system‐specific chemistry, emphasizing the need for tailored datasets.
Martin Hoffmann Petersen   +5 more
wiley   +1 more source

The Necessity of Dynamic Workflow Managers for Advancing Self‐Driving Labs and Optimizers

open access: yesAdvanced Intelligent Discovery, EarlyView.
We assess the maturity and integration readiness of key methodologies for Materials Acceleration Platforms, highlighting the need for dynamic workflow managers. Demonstrating this, we integrate PerQueue into a color‐mixing robot, showing how flexible orchestration improves coordination and optimization.
Simon K. Steensen   +6 more
wiley   +1 more source

Autonomous Machine Learning‐Based Classification and Arrangement of Submillimeter Objects Using a Capillary Force Gripper

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study presents an automated system integrating a capillary force gripper and machine learning‐based object detection for sorting and placing submillimeter objects. The system achieved stable and simultaneous manipulation of four object types, with an average task time of 86.0 seconds and a positioning error of 157 ± 84 µm, highlighting its ...
Satoshi Ando   +4 more
wiley   +1 more source

Inverse Design of Alloys via Generative Algorithms: Optimization and Diffusion within Learned Latent Space

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy