Results 131 to 140 of about 21,629,133 (329)

Improving OLTP data quality using data warehouse mechanisms

open access: bronze, 1999
Matthias Jarke   +5 more
openalex   +1 more source

Bayesian Optimization Guiding the Experimental Mapping of the Pareto Front of Mechanical and Flame‐Retardant Properties in Polyamide Nanocomposites

open access: yesAdvanced Intelligent Discovery, EarlyView.
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir   +4 more
wiley   +1 more source

Macrophage Phenotype Detection Methodology on Textured Surfaces via Nuclear Morphology Using Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi   +5 more
wiley   +1 more source

Security Data Warehouse Application [PDF]

open access: yes
The Security Data Warehouse (SDW) is used to aggregate and correlate all JSC IT security data. This includes IT asset inventory such as operating systems and patch levels, users, user logins, remote access dial-in and VPN, and vulnerability tracking and ...
Gonzalez, Steve   +4 more
core   +1 more source

Artificial Intelligence‐Driven Insights into Electrospinning: Machine Learning Models to Predict Cotton‐Wool‐Like Structure of Electrospun Fibers

open access: yesAdvanced Intelligent Discovery, EarlyView.
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia   +3 more
wiley   +1 more source

Graph Attention Neural Networks for Interpretable and Generalizable Prediction of Janus III–Vi Van Der Waals Heterostructures

open access: yesAdvanced Intelligent Discovery, EarlyView.
A crystal graph neural network based on the attention mechanism is proposed in this work. The model dynamically weights features through the attention mechanism, enabling precise prediction of properties of material from structural features. Here, taking Janus III–VI van der Waals heterostructures as a representative case, the properties have been ...
Yudong Shi   +7 more
wiley   +1 more source

Accelerating Surface Composition Characterization of Thin‐Film Materials Libraries Using Multi‐Output Gaussian Process Regression

open access: yesAdvanced Intelligent Discovery, EarlyView.
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen   +2 more
wiley   +1 more source

The Snowflake Elastic Data Warehouse

open access: yesSIGMOD Conference, 2016
B. Dageville   +17 more
semanticscholar   +1 more source

CrossMatAgent: AI‐Assisted Design of Manufacturable Metamaterial Patterns via Multi‐Agent Generative Framework

open access: yesAdvanced Intelligent Discovery, EarlyView.
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy