Results 111 to 120 of about 559 (167)
Feature selection combined with machine learning and high‐throughput experimentation enables efficient handling of high‐dimensional datasets in emerging photovoltaics. This approach accelerates material discovery, improves process optimization, and strengthens stability prediction, while overcoming challenges in data quality and model scalability to ...
Jiyun Zhang +5 more
wiley +1 more source
Information Dense and Industry Scalable Accelerated Formation
Pulsed formation can reduce lithium‐ion battery formation time by over 50% while maintaining or enhancing performance. Validated on 25 Ah prismatic cells, this industry‐scalable method yields thinner, more homogeneous solid electrolyte interphases (SEIs).
Leon Merker +3 more
wiley +1 more source
This study applies QSAR‐based new approach methodologies to 90 synthetic tattoo and permanent makeup pigments, revealing systemic links between their physicochemical properties and absorption, distribution, metabolism, and elimination profiles. The correlation‐driven analysis using SwissADME, ChemBCPP, and principal component analysis uncovers insights
Girija Bansod +10 more
wiley +1 more source
We investigate MACE‐MP‐0 and M3GNet, two general‐purpose machine learning potentials, in materials discovery and find that both generally yield reliable predictions. At the same time, both potentials show a bias towards overstabilizing high energy metastable states. We deduce a metric to quantify when these potentials are safe to use.
Konstantin S. Jakob +2 more
wiley +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
CH2M Hill Hanford Group Inc (CHG) Information Resource Management (IRM) Strategic Plan [PDF]
core +1 more source
Large language models are transforming microbiome research by enabling advanced sequence profiling, functional prediction, and association mining across complex datasets. They automate microbial classification and disease‐state recognition, improving cross‐study integration and clinical diagnostics.
Jieqi Xing +4 more
wiley +1 more source
Flexible Memory: Progress, Challenges, and Opportunities
Flexible memory technology is crucial for flexible electronics integration. This review covers its historical evolution, evaluates rigid systems, proposes a flexible memory framework based on multiple mechanisms, stresses material design's role, presents a coupling model for performance optimization, and points out future directions.
Ruizhi Yuan +5 more
wiley +1 more source
Exosomes are emerging as powerful biomarkers for disease diagnosis and monitoring. This review highlights the integration of surface‐enhanced Raman spectroscopy with artificial intelligence to enhance molecular fingerprinting of exosomes. Machine learning and deep learning techniques improve spectral interpretation, enabling accurate classification of ...
Munevver Akdeniz +2 more
wiley +1 more source
Toward Environmentally Friendly Hydrogel‐Based Flexible Intelligent Sensor Systems
This review summarizes environmentally and biologically friendly hydrogel‐based flexible sensor systems focusing on physical, chemical, and physiological sensors. Furthermore, device concepts moving forward for the practical application are discussed about wireless integration, the interface between hydrogel and dry electronics, automatic data analysis
Sudipta Kumar Sarkar, Kuniharu Takei
wiley +1 more source

