Results 291 to 300 of about 3,236,092 (351)

Structurally Colored Physically Unclonable Functions with Ultra‐Rich and Stable Encoding Capacity

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
This study reports a design strategy for generating bright‐field resolvable physically unclonable functions with extremely rich encoding capacity coupled with outstanding thermal and chemical stability. The optical response emerges from thickness‐dependent structural color formation in ZnO features, which are fabricated by physical vapor deposition ...
Abidin Esidir   +8 more
wiley   +1 more source

Data-Driven Design of Mechanically Hard Soft Magnetic High-Entropy Alloys. [PDF]

open access: yesAdv Sci (Weinh)
Dai M   +7 more
europepmc   +1 more source

Mesenchymal Stem Cells‐Derived Extracellular Vesicles Mimetics as Osteoinductive Mediators for Bone Healing

open access: yesAdvanced Functional Materials, EarlyView.
Mesenchymal stem cell‐derived nanoghosts (MSC‐NGs) mimic naturally secreted extracellular vesicles (MSC‐EVs) in structure and physicochemical properties but can be synthesized at more translatable yields. As osteogenic agents, MSC‐NGs demonstrate superior outcomes compared to MSC‐EVs.
Antoine Karoichan   +4 more
wiley   +1 more source

Automated self-service cohort selection for large-scale population sciences and observational research: The California teachers study researcher platform. [PDF]

open access: yesPLoS One
Lacey JV   +12 more
europepmc   +1 more source

Biologically‐Inspired Melt Electrowriting for the Generation of Highly Biomimetic Functional Myocardium

open access: yesAdvanced Functional Materials, EarlyView.
In this work, melt electrowriting is used to fabricate a 3D printed scaffold design that generates engineered cardiac tissues with in‐plane contraction, mimicking natural myocardium. It is shown that these tissues display advanced maturation and functionality.
Olalla Iglesias‐García   +23 more
wiley   +1 more source

Multi‐Scaled Cellulosic Nanonetworks from Tunicates

open access: yesAdvanced Functional Materials, EarlyView.
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy