Results 211 to 220 of about 3,739,031 (335)

POM‐Based Water Splitting Catalyst Under Acid Conditions Driven by Its Assembly on Carbon Nanotubes

open access: yesAdvanced Materials, EarlyView.
A newly‐engineered POM‐based electrocatalyst incorporating non‐innocent counter cations exhibits fast kinetics for either the OER or HER under strongly acidic conditions (1 m H2SO4), depending on whether it is assembled on carbon nanotubes (1@CNT) or physically mixed with them (1/CNT). In water‐splitting tests using a two‐electrode setup, these systems
Eugenia P. Quirós‐Díez   +8 more
wiley   +1 more source

Tailored Redox‐Active Catholytes Enabling High‐Rate and High‐Loading All‐Solid‐State Lithium‐Sulfur Batteries

open access: yesAdvanced Materials, EarlyView.
This study explores iodine substitution in solid electrolytes to overcome sluggish redox kinetics and poor charge transport in all‐solid‐state Li‐S batteries. The resulting iodine‐rich, amorphous phase and superionic, nanocrystalline domains enable effective redox mediation and provide a robust ionic percolation network.
Jingui Yang   +8 more
wiley   +1 more source

The antitumor mechanism of immuno-flap treatment in a rat model of head and neck cancer. [PDF]

open access: yesCancer Immunol Immunother
Mori H   +10 more
europepmc   +1 more source

Electrically Readable Lateral Flow Assay Using Organic Transistors for Diagnostic Applications

open access: yesAdvanced Materials, EarlyView.
Electrolyte‐gated organic field‐effect transistors (EGOFETs) are integrated with lateral flow (LF) paper fluidics to create a reusable, portable, and low‐cost point‐of‐care (PoC) diagnostic test. The devices are validated for Human Immunoglobulin G detection, achieving high sensitivity (0.1 fm), selectivity, and reproducibility with rapid results in 20–
María Jesús Ortiz‐Aguayo   +4 more
wiley   +1 more source

Optimized fault detection and control for enhanced reliability and efficiency in DC microgrids. [PDF]

open access: yesSci Rep
Somanna B   +6 more
europepmc   +1 more source

Mesenchymal Stem Cell‐Inspired Microneedle Platform for NIR‐responsive Immunomodulation and Accelerated Chronic Wound Healing

open access: yesAdvanced Materials, EarlyView.
The research demonstrates a Mesenchymal Stem Cell‐inspired microneedle platform (MSCi@MN) that addresses chronic diabetic wounds by combining MSC‐derived extracellular nanovesicles (NV)–DNA conjugates in microneedle tips with photothermal MXene in the patch layer.
Chan Ho Moon   +21 more
wiley   +1 more source

Home - About - Disclaimer - Privacy