Results 191 to 200 of about 403,791 (331)
Geomorphological evidence of large vertebrates interacting with the seafloor at abyssal depths in a region designated for deep-sea mining. [PDF]
Marsh L, Huvenne VAI, Jones DOB.
europepmc +1 more source
A multimodal fusion pipeline predicts high‐resolution ion distributions in imaging mass spectrometry by integrating Fourier transform ion cyclotron resonance, time‐of‐flight matrix‐assisted laser desorption/ionization, and time‐of‐flight secondary ion mass spectrometry data.
Md Inzamam Ul Haque +7 more
wiley +1 more source
Feature selection combined with machine learning and high‐throughput experimentation enables efficient handling of high‐dimensional datasets in emerging photovoltaics. This approach accelerates material discovery, improves process optimization, and strengthens stability prediction, while overcoming challenges in data quality and model scalability to ...
Jiyun Zhang +5 more
wiley +1 more source
Information Dense and Industry Scalable Accelerated Formation
Pulsed formation can reduce lithium‐ion battery formation time by over 50% while maintaining or enhancing performance. Validated on 25 Ah prismatic cells, this industry‐scalable method yields thinner, more homogeneous solid electrolyte interphases (SEIs).
Leon Merker +3 more
wiley +1 more source
This study applies QSAR‐based new approach methodologies to 90 synthetic tattoo and permanent makeup pigments, revealing systemic links between their physicochemical properties and absorption, distribution, metabolism, and elimination profiles. The correlation‐driven analysis using SwissADME, ChemBCPP, and principal component analysis uncovers insights
Girija Bansod +10 more
wiley +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Flexible Memory: Progress, Challenges, and Opportunities
Flexible memory technology is crucial for flexible electronics integration. This review covers its historical evolution, evaluates rigid systems, proposes a flexible memory framework based on multiple mechanisms, stresses material design's role, presents a coupling model for performance optimization, and points out future directions.
Ruizhi Yuan +5 more
wiley +1 more source

