Results 201 to 210 of about 403,791 (331)
Exosomes are emerging as powerful biomarkers for disease diagnosis and monitoring. This review highlights the integration of surface‐enhanced Raman spectroscopy with artificial intelligence to enhance molecular fingerprinting of exosomes. Machine learning and deep learning techniques improve spectral interpretation, enabling accurate classification of ...
Munevver Akdeniz +2 more
wiley +1 more source
Mitochondrial genome and polymorphic microsatellite markers from the abyssal sponge Plenaster craigi Lim & Wiklund, 2017: tools for understanding the impact of deep-sea mining. [PDF]
Taboada S +6 more
europepmc +1 more source
Development of Hierarchical Control Structure for Deep-Water Mining Complex [PDF]
Antonenko, Anton +2 more
core
Toward Environmentally Friendly Hydrogel‐Based Flexible Intelligent Sensor Systems
This review summarizes environmentally and biologically friendly hydrogel‐based flexible sensor systems focusing on physical, chemical, and physiological sensors. Furthermore, device concepts moving forward for the practical application are discussed about wireless integration, the interface between hydrogel and dry electronics, automatic data analysis
Sudipta Kumar Sarkar, Kuniharu Takei
wiley +1 more source
The United States and the Law of the Sea After UNCLOS III—The Impact of General International Law [PDF]
Charney, Jonathan I.
core +1 more source
A sequential deep learning framework is developed to model surface roughness progression in multi‐stage microneedle fabrication. Using real‐world experimental data from 3D printing, molding, and casting stages, an long short‐term memory‐based recurrent neural network captures the cumulative influence of geometric parameters and intermediate outputs ...
Abdollah Ahmadpour +5 more
wiley +1 more source
Automatic Determination of Quasicrystalline Patterns from Microscopy Images
This work introduces a user‐friendly machine learning tool to automatically extract and visualize quasicrystalline tiling patterns from atomically resolved microscopy images. It uses feature clustering, nearest‐neighbor analysis, and support vector machines. The method is broadly applicable to various quasicrystalline systems and is released as part of
Tano Kim Kender +2 more
wiley +1 more source
opXRD: Open Experimental Powder X‐Ray Diffraction Database
We introduce the Open Experimental Powder X‐ray Diffraction Database, the largest openly accessible collection of experimental powder diffractograms, comprising over 92,000 patterns collected across diverse material classes and experimental setups. Our ongoing effort aims to guide machine learning research toward fully automated analysis of pXRD data ...
Daniel Hollarek +23 more
wiley +1 more source
The Future of the Exploitation of the Resources of the Deep Seabed and Subsoil [PDF]
Bailey, John S.
core +1 more source
Machine learning predicts activation energies for key steps in the water‐gas shift reaction on 92 MXenes. Random Forest is identified as the most accurate model. Reaction energy and reactant LogP emerge as key descriptors. The approach provides a predictive framework for catalyst design, grounded in density functional theory data and validated through ...
Kais Iben Nassar +3 more
wiley +1 more source

