Results 221 to 230 of about 150,474 (345)
Studies of quark and diquark fragmentation into identified hadrons in deep inelastic muon-proton scattering [PDF]
, 1985 M. Arneodo, A. Arvidson, J.J. Aubert, B. Badełek, J. Beaufays, K. H. Becks, C. P. Bee, C. Benchouk, G. Berghoff, I. Bird, D. Blum, E. Böhm, X. De Bouard, F.W. Brasse, H. M. Braun, C. Broll, S. Brown, H. Brück, H. Calén, D. K. Callebaut, J. Carr, J. S. Chima, J. Ciborowski, R.W. Clifft, J.H. Cobb, G. Coignet, F. Combley, J. A. Coughlan, G.R. Court, G. D’Agostini, S. Dahlgren, Joshua Davies, F. Dengler, I. Derado, U. Dosselli, T. Dreyer, J. Dress, J. J. Dumont, M. Düren, V. Eckardt, A. J. Edwards, M. Edwards, T. Ernst, G. Eszes, Judith Favier, M.I. Ferrero, J. Figiel, W. Flauger, J. M. Foster, E. Gabathuler, J. Gajewski, R. Gamet, J. Gayler, N.I. Geddes, P. Giubellino, C. Gößling, P. Grafström, F. Grard, Lars Gustafsson, J. Haas, E. Hagberg, F.J. Hasert, P.J. Hayman, Ph. Heusse, C. Hoppe, M. Jaffré, A. Jachołkowska, F. Janata, Gábor Jancsó, Andrew Johnson, E. Kabuß, G. Kellner, V. Korbel, J. Krüger, S. Kullander, U. Landgraf, D. Lanske, J. Loken, M. Mong, M. Maire, A. Manz, W. Mohr, F. Montanet, Hugh Montgomery, R. Mount, E. Nagy, J. Nassalski, P.R. Norton, F. G. Oakham, A.M. Osborne, C. Pascaud, L. Paul, B. Pawlik, P. Payre, C. Peroni, H. Pessard, J. Pettingale, B. Pietrzyk, B. Pönsgen, M. Pötsch +99 moreopenalex +1 more sourceSemi-inclusive π0 target and beam-target asymmetries from 6 GeV electron scattering with CLAS
Physics Letters B, 2018 We present precision measurements of the target and beam-target spin asymmetries from neutral pion electroproduction in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.S. Jawalkar, S. Koirala, H. Avakian, P. Bosted, K.A. Griffioen, C. Keith, S.E. Kuhn, K.P. Adhikari, S. Adhikari, D. Adikaram, Z. Akbar, M.J. Amaryan, S. Anefalos Pereira, J. Ball, N.A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A.S. Biselli, S. Boiarinov, W.J. Briscoe, J. Brock, W.K. Brooks, S. Bültmann, V.D. Burkert, Frank Thanh Cao, C. Carlin, D.S. Carman, A. Celentano, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P.L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, M. Defurne, A. Deur, C. Djalali, G. Ddoge, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, J.A. Fleming, T.A. Forest, A. Fradi, M. Garçon, Y. Ghandilyan, G.P. Gilfoyle, K.L. Giovanetti, F.X. Girod, C. Gleason, W. Gohn, E. Golovatch, R.W. Gothe, M. Guidal, N. Guler, L. Guo, H. Hakobyan, C. Hanretty, N. Harrison, M. Hattawy, D. Heddle, K. Hicks, G. Hollis, M. Holtrop, S.M. Hughes, Y. Ilieva, D.G. Ireland, B.S. Ishkhanov, E.L. Isupov, D. Jenkins, H. Jiang, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, A. Klein, F.J. Klein, V. Kubarovsky, S.V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, H.Y. Lu, I.J.D. MacGregor, N. Markov, M. Mayer, M.E. McCracken, B. McKinnon, C.A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, R.A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L.A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A.I. Ostrovidov, R. Paremuzyan, K. Park, E. Pasyuk, E. Phelps, W. Phelps, J. Pierce, S. Pisano, O. Pogorelko, J.W. Price, Y. Prok, D. Protopopescu, B.A. Raue, M. Ripani, D. Riser, A. Rizzo, G. Rosner, P. Rossi, F. Sabatié, C. Salgado, R.A. Schumacher, E. Seder, Y.G. Sharabian, A. Simonyan, Iu. Skorodumina, G.D. Smith, D.I. Sober, D. Sokhan, N. Sparveris, I. Stankovic, S. Strauch, M. Taiuti, M. Ungaro, H. Voskanyan, E. Voutier, N.K. Walford, D.P. Watts, X. Wei, L.B. Weinstein, M.H. Wood, N. Zachariou, J. Zhang, Z.W. Zhao +162 moredoaj Roles of nanomagnetic beads on biosensing: From fabrication to application
Interdisciplinary Medicine, EarlyView.Leveraging their intrinsic superparamagnetic properties and rapid magnetic responsiveness, functionalized nanomagnetic beads have emerged as pivotal platforms in advanced biosensing system. Through surface engineering and structural design, these magnetic nanoparticles demonstrate multi‐capabilities, such as sample separation, signal enhancement, and ...Junjie Li, Liyang Duan, Qian Chen, Songsong Huang, Weixia Li, Huachu Zuo, Shuang Li, Wei Han, Wei Fu, Shike Hou, Bin Fan, Zetao Chen +11 morewiley +1 more sourceIntegrating surface‐enhanced Raman scattering with machine learning: Pioneering a comprehensive diagnostic and therapeutic platform for cancer management
Interdisciplinary Medicine, EarlyView.Integrating Surface‐Enhanced Raman Scattering (SERS) with machine learning creates a powerful platform for cancer management. This approach enhances diagnostic precision through non‐invasive molecular fingerprinting and enables real‐time therapeutic monitoring. By combining SERS with machine learning, it offers a comprehensive solution for early cancer Heng‐Zhou He, La Zhang, Yi‐Lin Wen, Yan‐Yang Wang, Jun‐Yan Zhang, Fei‐Hao Yao, Ji‐Yao Yu, Jing‐Xian Wu, Qi‐Ling Peng, Ning Jiang +9 morewiley +1 more source