Results 141 to 150 of about 806,463 (274)

Region‐to‐Region Unidirectional Connection In Vitro Brain Model for Studying Directional Propagation of Neuropathologies

open access: yesAdvanced Functional Materials, EarlyView.
A unidirectional cerebral organoid–organoid neural circuit is established using a microfluidic platform, enabling controlled directional propagation of electrical signals, neuroinflammatory cues, and neurodegenerative disease–related proteins between spatially separated organoids.
Kyeong Seob Hwang   +9 more
wiley   +1 more source

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey   +5 more
wiley   +1 more source

Ultrahigh‐Yield, Multifunctional, and High‐Performance Organic Memory for Seamless In‐Sensor Computing Operation

open access: yesAdvanced Functional Materials, EarlyView.
Molecular engineering of a nonconjugated radical polymer enables a significant enhancement of the glass transition temperature. The amorphous nature and tunability of the polymer, arising from its nonconjugated backbone, facilitates the fabrication of organic memristive devices with an exceptionally high yield (>95%), as well as substantial ...
Daeun Kim   +14 more
wiley   +1 more source

Crack‐Growing Interlayer Design for Deep Crack Propagation and Ultrahigh Sensitivity Strain Sensing

open access: yesAdvanced Functional Materials, EarlyView.
A crack‐growing semi‐cured polyimide interlayer enabling deep cracks for ultrahigh sensitivity in low‐strain regimes is presented. The sensor achieves a gauge factor of 100 000 at 2% strain and detects subtle deformations such as nasal breathing, highlighting potential for minimally obstructive biomedical and micromechanical sensing applications ...
Minho Kim   +11 more
wiley   +1 more source

A Smart Magnetically Actuated Flip‐Disc Programmable Metasurface with Ultralow Power Consumption for Real‐Time Channel Control

open access: yesAdvanced Functional Materials, EarlyView.
The study proposes a 1‐bit programmable metasurface based on flip‐disc display, named flip‐disc metasurface (FD‐MTS). This new design enables ultralow energy consumption while maintaining coding patterns. It also exhibits high scalability and multifunctional flexibility.
Jiang Han Bao   +8 more
wiley   +1 more source

3D Digital Light Processing of Redox‐Active Polymers for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
3D printing of electrochemically switchable conducting polymers is achieved by Digital Light Processing of redox‐active carbazole‐based polymer materials. Complex 2D and 3D architectures including dot arrays and pyramids clearly show the potential for novel 3D switchable electrochemical devices for sensors, electrochromic displays as well as 3D printed
Christian Delavier   +4 more
wiley   +1 more source

Universal Neuromorphic Element: NbOx Memristor with Co‐Existing Volatile, Non‐Volatile, and Threshold Switching

open access: yesAdvanced Functional Materials, EarlyView.
A W/NbOx/Pt memristor demonstrates the coexistence of volatile, non‐volatile, and threshold switching characteristics. Volatile switching serves as a reservoir computing layer, providing dynamic short‐term processing. Non‐volatile switching, stabilized through ISPVA, improves reliable long‐term readout. Threshold switching operates as a leaky integrate
Ungbin Byun, Hyesung Na, Sungjun Kim
wiley   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy