Results 51 to 60 of about 806,463 (274)
Efficient Deep Feature Learning and Extraction via StochasticNets
Deep neural networks are a powerful tool for feature learning and extraction given their ability to model high-level abstractions in highly complex data.
Fieguth, Paul +3 more
core +1 more source
Operator compression with deep neural networks
AbstractThis paper studies the compression of partial differential operators using neural networks. We consider a family of operators, parameterized by a potentially high-dimensional space of coefficients that may vary on a large range of scales. Based on the existing methods that compress such a multiscale operator to a finite-dimensional sparse ...
Kröpfl, Fabian +2 more
openaire +3 more sources
Reciprocal control of viral infection and phosphoinositide dynamics
Phosphoinositides, although scarce, regulate key cellular processes, including membrane dynamics and signaling. Viruses exploit these lipids to support their entry, replication, assembly, and egress. The central role of phosphoinositides in infection highlights phosphoinositide metabolism as a promising antiviral target.
Marie Déborah Bancilhon, Bruno Mesmin
wiley +1 more source
Fast and Efficient Information Transmission with Burst Spikes in Deep Spiking Neural Networks
The spiking neural networks (SNNs) are considered as one of the most promising artificial neural networks due to their energy efficient computing capability.
Choe, Hyeokjun +3 more
core +1 more source
Explaining deep neural networks
Deep neural networks are becoming more and more popular due to their revolutionary success in diverse areas, such as computer vision, natural language processing, and speech recognition. However, the decision-making processes of these models are generally not interpretable to users.
openaire +2 more sources
Monkeypox detection using deep neural networks
Abstract Background In May 2022, the World Health Organization (WHO) European Region announced an atypical Monkeypox epidemic in response to reports of numerous cases in some member countries unrelated to those where the illness is endemic. This issue has raised concerns about the widespread nature of this disease around
Azar, Amir Sorayaie +5 more
openaire +5 more sources
Molecular bases of circadian magnesium rhythms across eukaryotes
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley +1 more source
Deep oscillatory neural network
We propose a novel, brain-inspired deep neural network model known as the Deep Oscillatory Neural Network (DONN). Deep neural networks like the Recurrent Neural Networks indeed possess sequence processing capabilities but the internal states of the network are not designed to exhibit brain-like oscillatory activity.
Rohan, Nurani Rajagopal +5 more
openaire +2 more sources
Deep Neural Networks (DNNs) are universal function approximators providing state-of- the-art solutions on wide range of applications. Common perceptual tasks such as speech recognition, image classification, and object tracking are now commonly tackled via DNNs.
Balestriero, Randall, Baraniuk, Richard
openaire +2 more sources
Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley +1 more source

