Results 201 to 210 of about 241,296 (309)
A sequential deep learning framework is developed to model surface roughness progression in multi‐stage microneedle fabrication. Using real‐world experimental data from 3D printing, molding, and casting stages, an long short‐term memory‐based recurrent neural network captures the cumulative influence of geometric parameters and intermediate outputs ...
Abdollah Ahmadpour +5 more
wiley +1 more source
Automatic Determination of Quasicrystalline Patterns from Microscopy Images
This work introduces a user‐friendly machine learning tool to automatically extract and visualize quasicrystalline tiling patterns from atomically resolved microscopy images. It uses feature clustering, nearest‐neighbor analysis, and support vector machines. The method is broadly applicable to various quasicrystalline systems and is released as part of
Tano Kim Kender +2 more
wiley +1 more source
opXRD: Open Experimental Powder X‐Ray Diffraction Database
We introduce the Open Experimental Powder X‐ray Diffraction Database, the largest openly accessible collection of experimental powder diffractograms, comprising over 92,000 patterns collected across diverse material classes and experimental setups. Our ongoing effort aims to guide machine learning research toward fully automated analysis of pXRD data ...
Daniel Hollarek +23 more
wiley +1 more source
The Future of the Exploitation of the Resources of the Deep Seabed and Subsoil [PDF]
Bailey, John S.
core +1 more source
Machine learning predicts activation energies for key steps in the water‐gas shift reaction on 92 MXenes. Random Forest is identified as the most accurate model. Reaction energy and reactant LogP emerge as key descriptors. The approach provides a predictive framework for catalyst design, grounded in density functional theory data and validated through ...
Kais Iben Nassar +3 more
wiley +1 more source
A novel convolutional neural network architecture enables rapid, unsupervised analysis of IR spectroscopic data from DRIFTS and IRRAS. By combining synthetic data generation with parallel convolutional layers and advanced regularization, the model accurately resolves spectral features of adsorbed CO, offering real‐time insights into ceria surface ...
Mehrdad Jalali +5 more
wiley +1 more source
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir +4 more
wiley +1 more source
Trajectory Tracking Control for Subsea Mining Vehicles Based on Fuzzy PID Optimised by Genetic Algorithms. [PDF]
Bu H, Wu M, Liu B, Yan Z.
europepmc +1 more source
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi +5 more
wiley +1 more source
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia +3 more
wiley +1 more source

