Results 211 to 220 of about 1,744,611 (325)

Coacervates Composed of Low‐Molecular‐Weight Compounds– Molecular Design, Stimuli Responsiveness, Confined Reaction

open access: yesAdvanced Biology, EarlyView.
Coacervation driven by liquid‐liquid phase separation (LLPS) of biopolymers has garnered increasing attention in biology since this leads to the formation of membraneless organelles capable of performing essential yet largely unknown functions. This review highlights recent advances in coacervates (artificial condensates) composed of low‐molecular ...
Sayuri L. Higashi, Masato Ikeda
wiley   +1 more source

Distinct Network Morphologies from In Situ Polymerization of Microtubules in Giant Polymer‐Lipid Hybrid Vesicles

open access: yesAdvanced Biology, EarlyView.
The successful in situ polymerization of microtubules in giant polymer‐lipid hybrid vesicles is illustrated. The microtubules formed in the giant hybrid vesicles exhibit different morphologies including lumenal network formation and membrane association. Abstract Creating artificial cells with a dynamic cytoskeleton, akin to those in living cells, is a
Paula De Dios Andres   +4 more
wiley   +1 more source

Regulating Protein Immobilization During Cell‐Free Protein Synthesis in Hyaluronan Microgels

open access: yesAdvanced Biology, EarlyView.
Bifunctional microgels carrying a linear DNA template and Ni2+‐activated NTA moieties are used as platform for cell‐free protein synthesis and in situ protein immobilization. By varying the concentration of NTA moieties in the microgels, the amount of GFP‐His immobilized inside the microgel and released to the microgel environment can be regulated ...
Anika Kaufmann   +2 more
wiley   +1 more source

Novel Biologically Active Glass Fiber Functionalized Using Magnesium Phosphate Cement Promotes Bone and Vascular Regeneration

open access: yesAdvanced Biology, EarlyView.
In this study, a new type of bioactive glass fiber ‐based composite magnesium phosphate bone cement is prepared and verified that its mechanical strength and biological properties. In addition, the cement may have played a biologically active role in the Notch and HIF signaling pathways.
Yuzheng Lu   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy