Results 31 to 40 of about 4,850 (153)

A new approach to fully degenerate Bernoulli numbers and polynomials [PDF]

open access: yesFilomat, 2022
In this paper, we consider the doubly indexed sequence a(r) ? (n,m), (n,m ? 0), defined by a recurrence relation and an initial sequence a(r) ? (0,m), (m ? 0). We derive with the help of some differential operator an explicit expression for a(r) ? (n,
Taekyun Kim, Dae San Kim
semanticscholar   +1 more source

A Note on Multi-Euler–Genocchi and Degenerate Multi-Euler–Genocchi Polynomials

open access: yesJournal of Mathematics, 2023
Recently, the generalized Euler–Genocchi and generalized degenerate Euler–Genocchi polynomials are introduced. The aim of this note is to study the multi-Euler–Genocchi and degenerate multi-Euler–Genocchi polynomials which are defined by means of the ...
Taekyun Kim   +3 more
doaj   +1 more source

Some Identities of Degenerate Bell Polynomials

open access: yesMathematics, 2020
The new type degenerate of Bell polynomials and numbers were recently introduced, which are a degenerate version of Bell polynomials and numbers and are different from the previously introduced partially degenerate Bell polynomials and numbers.
Taekyun Kim   +3 more
doaj   +1 more source

Normal ordering of degenerate integral powers of number operator and its applications

open access: yesApplied Mathematics in Science and Engineering, 2022
The normal ordering of an integral power of the number operator in terms of boson operators is expressed with the help of the Stirling numbers of the second kind. As a ‘degenerate version’ of this, we consider the normal ordering of a degenerate integral
Taekyun Kim, Dae San Kim, Hye Kyung Kim
doaj   +1 more source

Some identities related to degenerate r-Bell and degenerate Fubini polynomials

open access: yesApplied Mathematics in Science and Engineering, 2023
Many works have been done in recent years as to explorations for degenerate versions of some special polynomials and numbers, which began with the pioneering work of Carlitz on the degenerate Bernoulli and degenerate Euler polynomials.
Taekyun Kim, Dae San Kim, Jongkyum Kwon
doaj   +1 more source

Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus

open access: yesAIMS Mathematics, 2022
Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results ...
Hye Kyung Kim, Dmitry V. Dolgy
doaj   +1 more source

A Study on degenerate Whitney numbers of the first and second kinds of Dowling lattices

open access: yes, 2021
Dowling constructed Dowling lattice Qn(G), for any finite set with n elements and any finite multiplicative group G of order m, which is a finite geometric lattice.
Kim, Dae San, Kim, Taekyun
core   +1 more source

Some properties on degenerate Fubini polynomials

open access: yesApplied Mathematics in Science and Engineering, 2022
The nth Fubini number enumerates the number of ordered partitions of a set with n elements and is the number of possible ways to write the Fubini formula for a summation of integration of order n. Further, Fubini polynomials are natural extensions of the
Taekyun Kim   +3 more
doaj   +1 more source

Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind [PDF]

open access: yesSymmetry, 2019
In recent years, many mathematicians studied various degenerate versions of some special polynomials for which quite a few interesting results were discovered. In this paper, we introduce the type 2 degenerate Bernoulli polynomials of the second kind and
Taekyun Kim   +3 more
semanticscholar   +1 more source

SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-GENOCCHI NUMBERS AND POLYNOMIALS

open access: yesSouth East Asian J. of Mathematics and Mathematical Sciences, 2023
In the present article, we introduce a new class of degenerate q-poly- Genocchi polynomials and numbers including q-logarithm function. We derive some relations with this polynomials and the Stirling numbers of the second kind and investigate some ...
Mohd Nadeem, W. Khan
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy