Results 131 to 140 of about 98,752 (276)
Viscoelasticity‐driven instabilities are harnessed to create tunable, periodic textures in 3D‐printed liquid crystalline polymers. This study illustrates how processing parameters control these spontaneous meso‐scale patterns. These unique structural architectures unlock new possibilities for functional devices, ranging from photonic components to ...
Miaomiao Zou +17 more
wiley +1 more source
Rational Device Design and Doping‐Controlled Performance in Fast‐Response π‐Ion Gel Transistors
π‐Ion gel transistors (PIGTs) achieve extraordinary transconductance and stability through device configuration optimization, high‐mobility conjugated polymer selection, and hole scavenger doping. The optimized PIGTs maintain performance on flexible substrates, enabling printed, fast‐response, and wearable electronics.
Masato Kato +10 more
wiley +1 more source
Circular photogalvanic effect measurements and first‐principles calculations reveal spin‐splitting states in solution‐processed bournonite films (CuPbSbS3) due to structural and bulk inversion asymmetry. The results provide experimental confirmation of coexisting Rashba and Dresselhaus spin‐splitting states in this non‐centrosymmetric chalcogenide ...
Aeron McConnell +5 more
wiley +1 more source
An efficient NiOx HTL is successfully prepared by introducing MXene as an additive without further surface modification to fabricate high‐performance FASn0.5Pb0.5I3 perovskite solar cells. The introduction of MXene contributes to improved conductivity of NiOx, better aligned at NiOx/perovskite interfaces, and enhanced quality of perovskite films ...
Lijun Chen +12 more
wiley +1 more source
A modular biosynthetic PVA–gelatin hydrogel crosslinked via visible‐light thiol‐ene chemistry is engineered as a coating for neural electrodes. Optimizing matrix composition and mechanical properties enables the hydrogel to support astrocytic populations that guide neural differentiation and functional maturation.
Martina Genta +4 more
wiley +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source
Control of Polarization and Polar Helicity in BiFeO3 by Epitaxial Strain and Interfacial Chemistry
In BiFeO3 thin films, the interplay of interfacial chemistry, electrostatics, and epitaxial strain is engineered to stabilize homohelicity in polarization textures at the domain scale. The synergistic use of a Bi2O2‐terminated Aurivillius buffer layer and a highly anisotropic compressive epitaxial strain offers new routes to control the polar‐texture ...
Elzbieta Gradauskaite +5 more
wiley +1 more source
Role of Histidine‐Containing Peptoids in Accelerating the Kinetics of Calcite Growth
Amphiphilic histidine‐containing peptoids mimic carbonic anhydrase (CA) to accelerate calcite step growth. In the presence of Zn2+, they promote the deprotonation of HCO3−, the desolvation of Ca2+, and the reorganization of interfacial hydration layers, thereby reducing the activation barrier for calcite growth.
Mingyi Zhang +5 more
wiley +1 more source
Broadband, Flexible, Skin‐Compatible Carbon Dots/Graphene Photodetectors for Wearable Applications
Broadband, flexible photodetectors integrating nitrogen‐rich carbon dots with single‐layer graphene on plastic substrates are demonstrated. A biocompatible chitosan–glycerol electrolyte enables efficient low‐voltage gating and on‐skin operation. The devices exhibit ultraviolet‐to‐near‐infrared response, mechanical robustness under bending, and verified
Nouha Loudhaief +20 more
wiley +1 more source
Proteins, Processing, and Properties of Adhesive Fluid Condensates Purified from Mussels
Mussels exhibit an unmatched proficiency for adhering to wet surfaces in salty environments—a remarkable ability that could inspire new biomedical and technical glues. The fluid protein condensates used to form the underwater mussel glue are extracted, reconstituted and characterized with advanced spectroscopy and nanomechanical analysis, revealing ...
Mathieu D. Rivard +8 more
wiley +1 more source

