Results 141 to 150 of about 98,752 (276)

Silver Ion‐Mediated [hk1]‐Oriented Sb2Se3 Crystal Growth for Efficient Photoelectrochemical Hydrogen Evolution

open access: yesAdvanced Functional Materials, EarlyView.
Ag+‐mediated hydrothermal crystal engineering promotes preferential [hk1]‐oriented growth of Sb2Se3 via an ultrathin MoOx interlayer, improving crystallinity and suppressing non‐radiative recombination. The optimized Ag+ treatment photocathode delivers 24.7 mA cm−2 at 0 VRHE and improved stability, revealing an ion‐modulated route to high‐performance ...
Ziying Zhang   +10 more
wiley   +1 more source

Counterion Dependent Side‐Chain Relaxation Stiffens a Chemically Doped Thienothiophene Copolymer

open access: yesAdvanced Functional Materials, EarlyView.
Oxidation of a thienothiophene copolymer, p(g3TT‐T2), via different doping strategies and dopant molecules resulted in materials with similar oxidation levels and a high electrical conductivity of ≈100 S cm−1. However, mechanical properties varied significantly, with sub‐glass transition temperatures and elastic moduli spanning from –44°C to –3°C and ...
Mariavittoria Craighero   +12 more
wiley   +1 more source

From Mechanics to Electronics: Influence of ALD Interlayers on the Multiaxial Electro‐Mechanical Behavior of Metal–Oxide Bilayers

open access: yesAdvanced Functional Materials, EarlyView.
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff   +9 more
wiley   +1 more source

Exciton‐Polaritons in Nanoscale Metal‐Organic Frameworks: A Platform for the Reversible Modulation of Strong Light‐Matter Coupling via the Chemical Environment

open access: yesAdvanced Functional Materials, EarlyView.
Strong exciton‐photon coupling is achieved by integrating porphyrin ligand‐based MOF nanoparticles in optical cavities, as evidenced by pronounced polariton branch anticrossing. The porous nature of the resonator enables precise, reversible tuning via vapor pressure, unlocking unprecedented chemical‐environment controlled dynamic polaritonic platforms ...
Beatriz de Sola‐Báez   +7 more
wiley   +1 more source

Intermediate Resistive State in Wafer‐Scale Vertical MoS2 Memristors Through Lateral Silver Filament Growth for Artificial Synapse Applications

open access: yesAdvanced Functional Materials, EarlyView.
In MOCVD MoS2 memristors, a current compliance‐regulated Ag filament mechanism is revealed. The filament ruptures spontaneously during volatile switching, while subsequent growth proceeds vertically through the MoS2 layers and then laterally along the van der Waals gaps during nonvolatile switching.
Yuan Fa   +19 more
wiley   +1 more source

Dual‐Ligand Metal‐Organic Frameworks via In Situ Amidoxime Engineering for Selective Ion Separation

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by microbial ion‐trapping mechanisms, a mild and universal strategy is developed to construct highly porous amidoxime‐functionalized MOFs. DFT calculations and molecular force measurements reveal that the dual‐ligand amidoxime configuration significantly strengthens Ga(III) affinity.
Zhifang Lv   +9 more
wiley   +1 more source

MAGTWIST: A Magnetically‐Driven Rotary Actuator Using a Traveling‐Wave With Integrated Stiffness Tunability

open access: yesAdvanced Functional Materials, EarlyView.
MAGTWIST: A compact magnetic rotary actuator, enabling smooth, stepless rotation, and on‐demand locking. Inspired by peristalsis, a soft polymer belt generates a traveling‐wave, enabling 270° rotation when heated. Cooling stiffens the belt, locking it in position and enabling it to withstand high loads.
Simon Frieler   +3 more
wiley   +1 more source

Pixelation‐Free, Monolithic Iontronic Pressure Sensors Enabling Large‐Area Simultaneous Pressure and Position Recognition via Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
A pixelation‐free, monolithic iontronic pressure sensor enables simultaneous pressure and position sensing over large areas. AC‐driven ion release generates spatially varying impedance pathways depending on the pressure. Machine learning algorithms effectively decouple overlapping pressure–position signals from the multichannel outputs, achieving high ...
Juhui Kim   +10 more
wiley   +1 more source

Overcoming Debye Length Limitations in Electrolyte‐Gated Transistor Biosensors Using Nanoscale‐Grooved Oxide Semiconductors Fabricated by Thermal Nanoimprint Lithography

open access: yesAdvanced Functional Materials, EarlyView.
Nanoscale‐grooved indium gallium oxide (IGO) semiconductors, patterned via thermal nanoimprint lithography (NIL) using CD/DVD templates, are integrated into electrolyte‐gated transistor biosensors to overcome Debye length limitations. Precisely engineered concave–convex nanostructures modulate local electrostatic potentials, extend the effective Debye ...
Jong Yu Song   +5 more
wiley   +1 more source

Accelerated Discovery of High Performance Ni3S4/Ni3Mo HER Catalysts via Bayesian Optimization

open access: yesAdvanced Functional Materials, EarlyView.
Integrated workflow accelerates the catalyst discovery of hydrogen evolution reaction via Bayesian optimization. An experiment‐trained surrogate model proposes synthesis conditions, guiding iterative refinement using electrochemical performance metrics.
Namuersaihan Namuersaihan   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy