Results 271 to 280 of about 1,590,994 (364)

Stretchable p/n‐Pair Thermoelectric Fibers Based on Core (Ag)–Shell (Ag2Se) Structure for Wearable Electronics

open access: yesAdvanced Functional Materials, EarlyView.
Stretchable p/n‐pair Ag@Ag2Se TE fibers are developed for next‐generation fiber‐based electronics. The TE fibers maintain excellent electrical conductivity and a high Seebeck coefficient under strain. Integrated into textiles, they enable simultaneous temperature and strain sensing, as well as energy harvesting, offering great potential for ...
Chaebeen Kwon   +6 more
wiley   +1 more source

Why does AI hinder democratization? [PDF]

open access: yesProc Natl Acad Sci U S A
Chu CYC, Chang JJ, Lin CC.
europepmc   +1 more source

Dual‐Interface Engineering of the Source Electrode to Overcome the Intrinsic Injection‐Leakage Trade‐Off in Organic Schottky Barrier Transistors

open access: yesAdvanced Functional Materials, EarlyView.
A charge injection layer is introduced via RIE to decouple the dual functions of the source electrode: lowering contact resistance through doping to enhance charge injection, while SAM modification on the top surface minimizes leakage current. This strategy enables OSBTs to achieve a high on/off ratio with improved stability and performance.
Hye Ryun Sim   +6 more
wiley   +1 more source

Towards a social history of European integration. [PDF]

open access: yesEur Rev Hist
van de Grift L, Leucht B.
europepmc   +1 more source

Dual‐Functional Li2B4O7 Coating on Carbon Fibers for Enhanced Li+ Transport and Stability in Sulfide All‐Solid‐State Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A dual‐functional Li2B4O7 coating on carbon fibers is designed to resolve the critical interfacial degradation in sulfide all‐solid‐state batteries. The conformal layer acts as a physical barrier to suppress parasitic reactions while its unique dielectric properties simultaneously facilitate Li+ transport.
Yeonghoon Kim   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy