Results 271 to 280 of about 58,183 (326)
This study proposes a function‐sharing anode design to enable nonmetallic lithium insertion while maintaining intimate interfacial contact with the solid‐state electrolyte. A combination of lithium‐compatible and conformable borohydrides, highly conformable indium metal, less‐graphitized acetylene black, and a layer of highly graphitized massive ...
Keita Kurigami +3 more
wiley +1 more source
Metal-Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. [PDF]
Feng D +7 more
europepmc +1 more source
Phase Diagrams Enable Solid‐State Battery Design
Batteries are non‐equilibrium devices with inherent thermodynamic driving forces to react at interfaces, regardless of kinetics or operating conditions. Chemical potential mismatches across interfaces are dissipated via interfacial reactions. In this work, it is illustrated how phase diagrams and chemical potential maps predict degradation pathways but
Nathaniel L. Skeele, Matthias T. Agne
wiley +1 more source
An intentionally added, chemically formed LixAlSy coating stabilizes the lithium–electrolyte interface in solid‐state Li–S batteries. The layer suppresses side reactions, preserves smooth charge transfer, and improves ion transport from the start. This approach offers a practical route to more durable solid‐state batteries and a clearer understanding ...
Xinyi Wang +4 more
wiley +1 more source
Cation-Loaded Porous Mg2+-Zeolite Layer Direct Dendrite-Free Deposition toward Long-Life Lithium Metal Anodes. [PDF]
Su B +8 more
europepmc +1 more source
Aqueous directional ice templating (DIT) is developed for making NMC811 cathodes containing vertically aligned pore arrays through electrode thickness. The effects of calendering are studied for the DIT electrodes to find optimal calendering and simultaneously achieve high gravimetric and volumetric energy densities and rate capability for lithium ion ...
Guanting Li +3 more
wiley +1 more source
Strategies for Enhancing Thermal Conductivity of PDMS in Electronic Applications
This review explores effective strategies for enhancing heat dissipation in Polydimethylsiloxane (PDMS)‐based composites, focusing on particle optimization, 3D network design, and multifunctional integration. It offers key insights into cutting‐edge methods and simulations that are advancing thermal management in modern electronic devices.
Xiang Yan, Marisol Martin‐Gonzalez
wiley +1 more source
This review outlines how understanding bone's biology, hierarchical architecture, and mechanical anisotropy informs the design of lattice structures that replicate bone morphology and mechanical behavior. Additive manufacturing enables the fabrication of orthopedic implants that incorporate such structures using a range of engineering materials ...
Stylianos Kechagias +4 more
wiley +1 more source

