Results 231 to 240 of about 56,590 (319)

Multimodal Optical Imaging and Modulation with Simultaneous Electrophysiology Through Smart Dura in Non‐Human Primates

open access: yesAdvanced Science, EarlyView.
This study demonstrates multimodal integration in non‐human primates, combining large‐scale, high‐density electrophysiology using Smart Dura with optical techniques such as multiphoton imaging (MPI), photothrombotic lesioning, optical coherence tomography angiography (OCTA), wide‐field intrinsic signal optical imaging (ISOI), and optogenetics.
Nari Hong   +10 more
wiley   +1 more source

Mastering the Flabby Ridge with Precision Impression Techniques in Prosthodontics-A Case Series.

open access: yesJ Pharm Bioallied Sci
Chansoria H   +5 more
europepmc   +1 more source

Magnetically Responsive Piezoelectric Nanocapacitors Enhance Neural Recovery Following Spinal Cord Injury via Targeted Spinal Magnetic Stimulation

open access: yesAdvanced Science, EarlyView.
This study presents a novel “in vivo–in vitro” therapeutic strategy for spinal cord injury by leveraging magnetically responsive piezoelectric nanomaterials. These nanomaterials enable targeted delivery of localized electrical stimulation at the injury site through noninvasive external magnetic actuation, thereby promoting axonal regeneration and ...
Zhihang Xiao   +9 more
wiley   +1 more source

A Closed‐Loop‐Capable Neural Interface Platform for Deep Brain Modulation via Integrated Non‐Viral Gene Delivery, NIR Optogenetics, and Electrophysiological Recording

open access: yesAdvanced Science, EarlyView.
A multifunctional, 3D porous neural interface combines non‐viral gene delivery and NIR optogenetics to enable minimally invasive, closed‐loop modulation of deep‐brain circuits. Abstract Closed‐loop neuromodulation requires precise, stable, and cell‐specific control of neural circuits with minimal invasiveness.
Chao‐Yi Chu   +14 more
wiley   +1 more source

Real‐Time In Vivo Cellular‐Level Imaging During Puncture

open access: yesAdvanced Science, EarlyView.
We present an artificial‐intelligence‐empowered integrative‐light‐field microendoscopy (AIM) needle that delivers real‐time in vivo, diffraction‐limited cellular‐level imaging during puncture and visualizes layered microstructures along the needle path. As a microscopic complement to CT/ultrasound, it improves sampling localization and adds preliminary
Huifang Gao   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy