Results 201 to 210 of about 457,701 (285)
Astrocytic PERK Deficiency Drives Prefrontal Circuit Dysfunction and Depressive‐Like Behaviors
Chen et al. show that the endoplasmic reticulum (ER) stress sensor PERK is downregulated in prefrontal cortex (PFC) astrocytes in major depressive disorder and in chronic‐stress mouse models. In young mice, astrocyte‐specific PERK loss reduces the synaptogenic cue thrombospondin‐1 (TSP1), leading to synaptic and circuit deficits and depressive‐like ...
Kai Chen +8 more
wiley +1 more source
Predictors of treatment response in patients with depressive disorder.
Mondal A, Kumar M.
europepmc +1 more source
The Phospholamban (PLN) R9C mutation reduces SERCA2a binding, increasing calcium recycling and baseline contractility. However, the excess of free PLN promotes pentamer formation, limiting phosphorylation and blunting β‐adrenergic signaling. Under cardiac stress, enhanced functional demands overwhelm proteostasis in PLN R9C cells, leading to misfolded ...
Qi Yu +10 more
wiley +1 more source
Sobel neural network for EEG-based major depressive disorder screening. [PDF]
Yang H, Ye Y.
europepmc +1 more source
Parabiosis, Assembloids, Organoids (PAO)
This review evaluates parabiosis, organoids, and assembloids as complementary disease models spanning systemic, organ, and multi‐organ levels. It highlights their construction strategies, applications, and current limitations, while emphasizing their integration with frontier technologies such as artificial intelligence, organ‐on‐a‐chip, CRISPR, and ...
Yang Hong +5 more
wiley +1 more source
Neurovascular coupling abnormalities in first-episode drug-naïve major depressive disorder patients. [PDF]
Cai S +10 more
europepmc +1 more source
Depression, a prevalent neuropsychiatric disorder with unclear pathogenesis, involves dysfunctional adenylyl cyclase 8 (Adcy8) as a key risk factor. Chronic stress selectively reduces Adcy8 expression in the dorsal CA1 (dCA1) neurons. Depletion of Adcy8 in dCA1 excitatory neurons induces depressive‐like behaviors by impairing neuronal excitability and ...
Zi‐Jie Liu +14 more
wiley +1 more source

