Results 241 to 250 of about 50,346 (305)

Universally Accurate or Specifically Inadequate? Stress‐Testing General Purpose Machine Learning Interatomic Potentials

open access: yesAdvanced Intelligent Discovery, EarlyView.
We investigate MACE‐MP‐0 and M3GNet, two general‐purpose machine learning potentials, in materials discovery and find that both generally yield reliable predictions. At the same time, both potentials show a bias towards overstabilizing high energy metastable states. We deduce a metric to quantify when these potentials are safe to use.
Konstantin S. Jakob   +2 more
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Non-linear dynamics of United States streamflow dataset. [PDF]

open access: yesData Brief
Raczyński K, Grala K, Cartwright JH.
europepmc   +1 more source

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

The AI-aging-enterprise: a political economy of aging and artificial intelligence. [PDF]

open access: yesGerontologist
Gallistl V   +8 more
europepmc   +1 more source

The Challenge of Handling Structured Missingness in Integrated Data Sources

open access: yesAdvanced Intelligent Discovery, EarlyView.
As data integration becomes ever more prevalent, a new research question that emerges is how to handle missing values that will inevitably arise in these large‐scale integrated databases? This missingness can be described as structured missingness, encompassing scenarios involving multivariate missingness mechanisms and deterministic, nonrandom ...
James Jackson   +6 more
wiley   +1 more source

A Physics Constrained Machine Learning Pipeline for Young's Modulus Prediction in Multimaterial Hyperelastic Cylinders Guided by Contact Mechanics

open access: yesAdvanced Intelligent Discovery, EarlyView.
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy