Results 121 to 130 of about 283,589 (317)

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

COMPLETELY REACHABLE ALMOST GROUP AUTOMATA

open access: yesUral Mathematical Journal
We consider finite deterministic automata such that their alphabets consist of exactly one letter of defect 1 and a set of permutations of the state set. We study under which conditions such an automaton is completely reachable. We focus our attention on
David Fernando Casas Torres
doaj   +1 more source

A Physics Constrained Machine Learning Pipeline for Young's Modulus Prediction in Multimaterial Hyperelastic Cylinders Guided by Contact Mechanics

open access: yesAdvanced Intelligent Discovery, EarlyView.
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas   +4 more
wiley   +1 more source

Deterministic automata for extended regular expressions

open access: yesOpen Computer Science, 2017
In this work we present the algorithms to produce deterministic finite automaton (DFA) for extended operators in regular expressions like intersection, subtraction and complement.
Syzdykov Mirzakhmet
doaj   +1 more source

Sampling Strategy: An Overlooked Factor Affecting Artificial Intelligence Prediction Accuracy of Peptides’ Physicochemical Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan   +3 more
wiley   +1 more source

A Review on Recent Trends of Bioinspired Soft Robotics: Actuators, Control Methods, Materials Selection, Sensors, Challenges, and Future Prospects

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
This article reviews the current state of bioinspired soft robotics. The article discusses soft actuators, soft sensors, materials selection, and control methods used in bioinspired soft robotics. It also highlights the challenges and future prospects of this field.
Abhirup Sarker   +2 more
wiley   +1 more source

A multi‐step finite‐state automaton for arbitrarily deterministic Tsetlin Machine learning [PDF]

open access: hybrid, 2021
K. Darshana Abeyrathna   +7 more
openalex   +1 more source

Robust Reinforcement Learning Control Framework for a Quadrotor Unmanned Aerial Vehicle Using Critic Neural Network

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
Quadrotor unmanned aerial vehicle control is critical to maintain flight safety and efficiency, especially when facing external disturbances and model uncertainties. This article presents a robust reinforcement learning control scheme to deal with these challenges.
Yu Cai   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy