Results 211 to 220 of about 5,515,542 (307)
The layer‐by‐layer (LbL) assembly of coordination solids, enabled by the surface‐mounted metal‐organic framework (SURMOF) platform, is on the cusp of generating the organic counterpart of the epitaxy of inorganics. The programmable and sequential SURMOF protocol, optimized by machine learning (ML), is suited for accessing high‐quality thin films of ...
Zhengtao Xu +2 more
wiley +1 more source
Intelligent radiative cooling devices, adaptable to various weather conditions, have the potential for year‐round energy savings. This study introduces a sustainable dual‐mode film made from polycaprolactone nanofibers and upcycled chip bags for effective thermal management.
Qimeng Song +4 more
wiley +1 more source
Metal‐tetracene dimeric complexes are synthesized through the pyridyl coordination to either Pt(II) or Pd(II). Photophysical properties are systematically compared as a function of the metal using steady‐state and time‐resolved spectroscopy. The Pt(II) dimer exhibits efficient intramolecular singlet fission and subsequent intramolecular up‐conversion ...
Yifan Bo +4 more
wiley +1 more source
This study uncovers a new switching mechanism in HfO2 and ZrO2, where the absence of a non‐polar layer along the a‐direction induces interaction between polar layers. Consequently, the switching barriers for growth are lower than those for nucleation in this direction, leading to a size‐dependent coercive field that matches experimental observations ...
Kun Hee Ye +6 more
wiley +1 more source
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana +2 more
wiley +1 more source
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai +8 more
wiley +1 more source
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian +6 more
wiley +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
Fractional Skyrmion Tubes in Chiral‐Interfaced 3D Magnetic Nanowires
In chiral 3D helical magnetic nanowires, the coupling between the geometric and magnetic chirality provides a way to create topological spin states like vortex tubes. Here, it is demonstrated how the breaking of this coupling in interfaced 3D nanowires of opposite chirality leads to even more complex topological spin states, such as fractional ...
John Fullerton +11 more
wiley +1 more source
This study demonstrates an alternative method of creating charge‐stable negatively charged nitrogen vacancy (NV−) centers close to the diamond surface without high‐temperature annealing. By illuminating nitrogen‐implanted regions with a continuous‐wave 405 nm laser, NV− centers are induced, exhibiting electron spin coherence properties suitable for ...
Jens Fuhrmann +4 more
wiley +1 more source

