Results 101 to 110 of about 764,877 (372)

Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions

open access: yesAdvanced Functional Materials, EarlyView.
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng   +7 more
wiley   +1 more source

The behavior of f-levels in HCP and BCC rare-earth elements in the ground state and in XPS and BIS spectroscopy from density-functional theory

open access: yes, 2014
The electronic structures of rare-earth elements in the HCP structure, and Europium in the BCC structure, are calculated by use of density-functional theory, DFT.
Jarlborg, T.
core   +2 more sources

Pyrazoline derivatives as possible corrosion inhibitors for mild steel in acidic media: A combined experimental and theoretical approach

open access: yesCogent Engineering, 2018
Various experimental and theoretical methods have been employed to study the effectiveness of two pyrazoline derivatives namely, 2-(4-(5-(p-tolyl)-4,5-dihydro-1H-pyrazol-3-yl)phenoxy)acetic acid (P1) and 2-(4-(5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazol-3 ...
Hassane Lgaz   +5 more
doaj   +1 more source

Unlocking Ultra‐Long Cycle Stability of Li Metal Electrode by Separators Modified by Porous Red Phosphorus Nanosheets

open access: yesAdvanced Functional Materials, EarlyView.
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang   +9 more
wiley   +1 more source

Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper

open access: yesAdvanced Functional Materials, EarlyView.
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan   +9 more
wiley   +1 more source

Transferability of interatomic potentials for silicene

open access: yesBeilstein Journal of Nanotechnology, 2023
The ability of various interatomic potentials to reproduce the properties of silicene, that is, 2D single-layer silicon, polymorphs was examined. Structural and mechanical properties of flat, low-buckled, trigonal dumbbell, honeycomb dumbbell, and large ...
Marcin Maździarz
doaj   +1 more source

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

The education of Walter Kohn and the creation of density functional theory [PDF]

open access: yes, 2014
The theoretical solid-state physicist Walter Kohn was awarded one-half of the 1998 Nobel Prize in Chemistry for his mid-1960's creation of an approach to the many-particle problem in quantum mechanics called density functional theory (DFT).
Zangwill, Andrew
core  

Efficacy of the DFT+U formalism for modeling hole polarons in perovskite oxides

open access: yes, 2014
We investigate the formation of self-trapped holes (STH) in three prototypical perovskites (SrTiO3, BaTiO3, PbTiO3) using a combination of density functional theory (DFT) calculations with local potentials and hybrid functionals.
Erhart, Paul   +3 more
core   +1 more source

Home - About - Disclaimer - Privacy