Results 111 to 120 of about 527,698 (329)

CO adsorption on Cu(111) and Cu(001) surfaces: improving site preference in DFT calculations

open access: yes, 2004
CO adsorption on Cu(111) and Cu(001) surfaces has been studied within ab-initio density functional theory (DFT). The structural, vibrational and thermodynamic properties of the adsorbate-substrate complex have been calculated.
Andersson   +46 more
core   +1 more source

Dynamic Networks via Polymerizable Deep Eutectic Monomers for Uniform Li+ Transport at Interfaces in Lithium Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The PDEM‐based SIGPE provides a dynamic nanophase from Li+‐bridged molecular self‐association, enhancing electrochemical stability and facilitating uniform Li+ ion flux at the interface. This unique solvation structure results in a hetero species‐driven inorganic‐rich SEI and long‐term cycle stability, suggesting that a PFAS‐free Li+‐containing monomer
Susung Yun   +5 more
wiley   +1 more source

Warming Up Density Functional Theory

open access: yes, 2017
Density functional theory (DFT) has become the most popular approach to electronic structure across disciplines, especially in material and chemical sciences.
A Kietzmann   +23 more
core   +1 more source

Ab Initio Study on 3D Anisotropic Ferroelectric Switching Mechanism and Coercive Field in HfO2 and ZrO2

open access: yesAdvanced Functional Materials, EarlyView.
This study uncovers a new switching mechanism in HfO2 and ZrO2, where the absence of a non‐polar layer along the a‐direction induces interaction between polar layers. Consequently, the switching barriers for growth are lower than those for nucleation in this direction, leading to a size‐dependent coercive field that matches experimental observations ...
Kun Hee Ye   +6 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

7,7\'-Bis[(aza-18-crown-6)carbonyl]thioindigo: Synthesis, Experimental, Theoretical Characterization and Biological Activities

open access: yesMedicine Science, 2013
This work presents the characterization of 7,7\'-Bis[(aza-18-crown-6)carbonyl]thioindigo (I) by quantum chemical calculations and spectral techniques. The molecular geometry, frontier molecular orbitals (FMO), molecular electrostatic potentials (MEP) and
Metin Koparir
doaj   +1 more source

Which Chromium–Sulfur Compounds Exist as 2D Material?

open access: yesAdvanced Functional Materials, EarlyView.
2D chromium sulfides synthesized using molecular beam epitaxy on graphene. Structural characterization reveals two novel 2D materials, Cr2S3‐2D, which lacks a direct bulk counterpart, and Cr223S${\rm Cr}_{2\frac{2}{3}}{\rm S}$4‐2D, a minimum thickness version of Cr5S6. However, attempts to synthesize CrS2 are unsuccessful. Both new 2D phases are stable
Affan Safeer   +5 more
wiley   +1 more source

Single Pair of Weyl Points Evolve From Spin Group‐Protected Nodal Line in Half‐Metallic Ferromagnet V3S4

open access: yesAdvanced Functional Materials, EarlyView.
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy