Results 71 to 80 of about 93,451 (264)
Generalization of graph-based active learning relaxation strategies across materials
Although density functional theory (DFT) has aided in accelerating the discovery of new materials, such calculations are computationally expensive, especially for high-throughput efforts. This has prompted an explosion in exploration of machine learning (
Xiaoxiao Wang +8 more
doaj +1 more source
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp +7 more
wiley +1 more source
This work reports the self‐assembly of a pyrene derivative into two distinct nanostructures and their application in visible‐light photocatalysis. The two nanostructures exhibit completely different yet complementary photocatalytic activities, promoting either H2 or H2O2 evolution.
Marianna Barbieri +6 more
wiley +1 more source
The chemical composition and band alignment are systematically investigated at the TiO2/InP heterointerface. Thin TiO2 films are deposited by ALD on atomically ordered, P‐terminated p‐InP(100). By combining UPS, XPS, and ab initio molecular dynamics, the atomistic structure and electronic alignment are revealed.
Mohammad Amin Zare Pour +11 more
wiley +1 more source
Bimetallic Nanoparticles as Cocatalysts for Photocatalytic Hydrogen Production
Recent developments have introduced bimetallic nanoparticles as effective cocatalysts for photocatalytic systems. This review explores the rapidly expanding research on bimetallic cocatalysts for photocatalytic production of hydrogen, emphasizing the creation of carrier‐selective contacts, localized surface plasmon resonance effects, methodologies for ...
Yufen Chen +4 more
wiley +1 more source
Crystal and Molecular Structure of
S. Jarmelo +5 more
openalex +1 more source
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández +12 more
wiley +1 more source
Supercell Band Calculations and Correlation for High-𝑇𝐶 Copper Oxide Superconductors
First principle band calculations based on local versions of density functional theory (DFT), together with results from nearly free-electron models, can describe many typical but unusual properties of the high-𝑇𝐶 copper oxides.
T. Jarlborg
doaj +1 more source
Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu +3 more
wiley +1 more source
A Survey of the Ionization Energies of the DNA Nitrogenous Bases via DFT-Based Calculations of their Potential Energy Surfaces [PDF]
Hwoi Chan Kwon +3 more
openalex +1 more source

