Results 201 to 210 of about 5,587,889 (314)

Controlled Magnesium Ion Delivery via Mg‐Sputtered Nerve Conduit for Enhancing Peripheral Nerve Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces a controllable degradation system for Mg‐based biomaterials using sputtering technology, marking a significant advancement in nerve regeneration research. The Mg‐sputtered nerve conduits demonstrate enhanced biocompatibility, biofunctionality, mechanical compatibility, and precise magnesium release, resulting in improved axonal ...
Hyewon Kim   +12 more
wiley   +1 more source

Advanced Multipurpose Spectroscopic Nanobio‐Device for Concurrent Lab‐on‐a‐Chip Label‐Free Separation and Detection of Extracellular Vesicles as Key‐Biomarkers for Point‐of‐Care Cardiovascular Disease Diagnostics

open access: yesAdvanced Healthcare Materials, EarlyView.
AIMSPec‐LoC is a novel lab‐on‐a‐chip platform integrating size‐based extracellular vesicle (EVs) separation with label‐free Raman spectroscopy and AI‐powered classification via SKiNET. This high‐throughput, portable system enables real‐time, multiplexed molecular fingerprinting of EVs from biofluids, offering transformative potential for early, non ...
Emma Buchan   +3 more
wiley   +1 more source

One Size Does Not Fit All: The Need for Sex-Specific Precision Medicine in Diabetes Technology. [PDF]

open access: yesJ Diabetes Sci Technol
Hossmann S   +33 more
europepmc   +1 more source

Generalizing Gelatin Methacryloyl Granular Hydrogel Fabrication Using Stable Microgels with Predictable Stiffness

open access: yesAdvanced Healthcare Materials, EarlyView.
Gelatin methacryloyl (GelMA) granular hydrogel scaffolds (GHS) are fabricated using a generalized two‐step photocrosslinking approach to yield stable (non‐dissolving) microgels suitable for in situ covalent assembly under physiological conditions. A phase diagram is developed to define the interplay between individual microgel stability and scaffold ...
Yuanhui Xiang   +4 more
wiley   +1 more source

Tri‐Layered Bioactive Cutaneous Scaffold with Integrated Bioactive Metal Organic Frameworks to Promote Full‐Thickness Infected Diabetic Wound Healing: Multifaceted Therapeutic Strategies

open access: yesAdvanced Healthcare Materials, EarlyView.
The limitations of existing clinical treatments highlight the need for a more comprehensive strategy for addressing infected diabetic wounds. A tri‐layered scaffold is developed to deliver therapeutics loaded in CuBDC and ZIF‐8 MOFs that are tailored to the requirements of deep‐infected diabetic wounds.
Ayse Gunyakti Mujtaba   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy