Results 301 to 310 of about 1,445,030 (396)

High‐Efficiency Dielectric Huygens’ Surfaces

open access: yes, 2015
M. Decker   +7 more
semanticscholar   +1 more source

Strain Partitioning at the Oxide Interface for the Isothermal Phase Transition in Freestanding Tri‐Layers

open access: yesAdvanced Functional Materials, EarlyView.
The metal–insulator transition temperature (TMI) is continuously tuned by the systematic change of relative thickness in VO2 and TiO2 films (tVO2/tTiO2${t_{{\mathrm{V}}{{\mathrm{O}}_2}}}/{t_{{\mathrm{Ti}}{{\mathrm{O}}_2}}}$) in freestanding TiO2/VO2/TiO2 tri‐layers.
Sungwon Lee   +5 more
wiley   +1 more source

Enhanced Electromechanical Response in 1D Hybrid Perovskites: Coexistence of Normal and Relaxor Ferroelectric Phases

open access: yesAdvanced Functional Materials, EarlyView.
The dynamic polarization reversal of coexisting normal and relaxor ferroelectrics in 1D TMAPbI₃ (tetramethylammonium, TMA) is deciphered through combined experimental and theoretical approaches. By bridging atomic‐scale motion, macroscopic polarization switching, and depolarization effects, a universal methodology is established to engineer next ...
Chen Xue   +8 more
wiley   +1 more source

Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions

open access: yesAdvanced Functional Materials, EarlyView.
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng   +7 more
wiley   +1 more source

Single Atom‐Particle Tandem Catalysis Enables Enhanced Desolvation Kinetics for Low‐Temperature Li‐S Batteries

open access: yesAdvanced Functional Materials, EarlyView.
In this work, the tandem catalyst consisted of single Fe atom and Fe3C nanoparticles on porous carbon sheet is initially proposed and developed to facilitate the dissociation of Li(solvent)x+ to release more isolated Li+ to participate in the subsequent polysulfide redox conversions by decreasing the related barriers, contributing to fast kinetics of ...
Yuhang Lin   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy