Results 31 to 40 of about 233,365 (231)
Non-linear difference polynomials sharing a polynomial with finite weight
The uniqueness theory of meromorphic function mainly studies the conditions under which there exists only one function satisfying these conditions. The uniqueness theory of entire and meromorphic functions has grown up as an extensive sub-field of value ...
Harina Pandit Waghamore +1 more
doaj +1 more source
Unicity of transcendental meromorphic functions concerning differential-difference polynomials
Let $ f $ and $ g $ be two transcendental meromorphic functions of finite order with a Borel exceptional value $ \infty $, let $ \alpha $ $ (\not\equiv 0) $ be a small function of both $ f $ and $ g $, let $ d, k, n, m $ and $ v_j (j = 1, 2, \cdots, d) $
Zhiying He, Jianbin Xiao, Mingliang Fang
doaj +1 more source
$q$-Classical orthogonal polynomials: A general difference calculus approach
It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator.
A.F. Nikiforov +26 more
core +4 more sources
We construct a new type of Genocchi polynomials using degenerate quantum exponential functions and find various forms of $ (q, h) $-difference equations with these polynomials as solutions. This paper includes properties of the symmetric structures of $ (
Jung Yoog Kang , Cheon Seoung Ryoo
doaj +1 more source
Value Sharing Results for q-Shifts Difference Polynomials
We investigate the zero distribution of q-shift difference polynomials of meromorphic functions with zero order and obtain some results that extend previous results of K. Liu et al.
Yong Liu +3 more
doaj +1 more source
Plancherel-Rotach asymptotic expansion for some polynomials from indeterminate moment problems
We study the Plancherel--Rotach asymptotics of four families of orthogonal polynomials, the Chen--Ismail polynomials, the Berg-Letessier-Valent polynomials, the Conrad--Flajolet polynomials I and II.
Dai, Dan +2 more
core +1 more source
On the difference between permutation polynomials
Abstract The well-known Chowla and Zassenhaus conjecture, proved by Cohen in 1990, states that if p > ( d 2 − 3 d + 4 ) 2 , then there is no complete mapping polynomial f in F p [ x ] of degree d ≥ 2 .
Vandita Patel +6 more
openaire +4 more sources
Schubert polynomial expansions revisited
We give an elementary approach utilizing only the divided difference formalism for obtaining expansions of Schubert polynomials that are manifestly nonnegative, by studying solutions to the equation $\sum Y_i\partial _i=\operatorname {id}$ on ...
Philippe Nadeau +2 more
doaj +1 more source
On Gould–Hopper-Based Fully Degenerate Poly-Bernoulli Polynomials with a q-Parameter
We firstly consider the fully degenerate Gould⁻Hopper polynomials with a q parameter and investigate some of their properties including difference rule, inversion formula and addition formula.
Ugur Duran, Patrick Njionou Sadjang
doaj +1 more source
Multivariate difference Gončarov polynomials
17 ...
Adeniran, A., Snider, L., Yan, C.
openaire +1 more source

