Results 261 to 270 of about 4,250 (281)
Some of the next articles are maybe not open access.
Algebraic geometry of Abel differential equation
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012Consider a system of differential equations \[ \dot{x}= -y + F(x,y), \qquad \dot{y}=x+G(x,y), \tag{\(*\)} \] where \(F\) and \(G\) are analytic functions without constant and linear terms. This system has a center at the origin if all the solutions around the origin are periodic.
Giat, Sh. +3 more
openaire +1 more source
Algebraic Topology via Differential Geometry
1988In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required.
M. Karoubi, C. Leruste
openaire +1 more source
Differential geometry on Grassmann algebras
Letters in Mathematical Physics, 1976H. C. Lee [1] developed the analogue of Riemannian geometry on a real symplectic manifold — the fundamental skew two-form taking the place of the symmetric tensor. The usual Riemannian concepts do not adapt themselves very well, thus ‘curvature’ is represented by a tensor of the third rank and ‘Killing's equations’ now involve this ‘curvature tensor ...
openaire +2 more sources
Numerical Algebraic Geometry and Differential Equations
2014In this paper we review applications of numerical algebraic geometry to differential equations. The techniques we address are direct solution, bootstrapping by filtering, and continuation and bifurcation. We review differential equations systems with multiple solutions and bifurcations.
Wenrui Hao, Bei Hu, Andrew J. Sommese
openaire +1 more source
Topological algebras and abstract differential geometry
Journal of Mathematical Sciences, 1999The notions of connection and curvature on principal sheaves, with structural sheaf the sheaf of groups \({\mathcal G}{\mathcal L}(n, {\mathcal A})\), are studied where \({\mathcal A}\) is a sheaf of unital, commutative and associative algebras. Suitable topological algebras provide concrete models of principal sheaves for which an abstract Frobenius ...
openaire +2 more sources
Differential forms in algebraic geometry
2011Before considering more general spaces we shall first discuss (1) the r-dimensional projective space Π r . In this space we shall consider a homogeneous coordinate system (Z0, Z1, ... , Z r ). Let U α be that part of Π r in which Z α ≠ 0. In U α we may then introduce non-homogeneous coordinates zαi = Zι/Zα (ι≠α).
openaire +2 more sources
Geometry of Differential Polynomial Functions, I: Algebraic Groups
American Journal of Mathematics, 1993Let \({\mathcal F}\) be a differential field of characteristic zero with derivation \(\delta\), and let \({\mathcal C}\) be its field of constants. Assume that both fields are algebraically closed. In this paper and its sequels, the author studies differential polynomial functions on schemes \(X\) over \({\mathcal F}\) and their applications to the ...
openaire +1 more source
Current Algebras, the Sugawara Model, and Differential Geometry
Journal of Mathematical Physics, 1970The Lie algebra defined by the currents in the Sugawara model is defined in a way that is natural from the point of view of Lie transformation theory and differential geometry. Previous remarks that the Sugawara model is associated with a field-theoretical dynamical system on a Lie group manifold are made more precise and presented in a differential ...
openaire +2 more sources
Geometry of Differential Polynomial Functions, II: Algebraic Curves
American Journal of Mathematics, 1994[For part I see ibid. 115, No. 6, 1385-1444 (1993; Zbl 0797.14016).] Let \({\mathcal F}\) be a differential field of characteristic zero with derivation \(\delta\), and let \({\mathcal C}\) be its field of constants. Assume that both fields are algebraically closed. In this paper, the author continues his studies of differential polynomial functions on
openaire +2 more sources
Complex Geometry: Interactions between Algebraic, Differential, and Symplectic Geometry
2001[no abstract available]
openaire +2 more sources

