Results 261 to 270 of about 4,114 (276)
RoboCT: The State and Current Challenges of Industrial Twin Robotic CT Systems. [PDF]
Herl G +7 more
europepmc +1 more source
Differential forms in computational algebraic geometry [PDF]
We give a uniform method for the two problems #CCC and #ICC of counting connected and irreducible components of complex algebraic varieties, respectively. Our algorithms are purely algebraic, i.e., they use only the field structure of C. They work efficiently in parallel and can be implemented by algebraic circuits of polynomial depth, i.e., in ...
Peter Scheiblechner, Peter Bürgisser
openaire +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Noncommutative differential geometry of matrix algebras
Journal of Mathematical Physics, 1990The noncommutative differential geometry of the algebra Mn (C) of complex n×n matrices is investigated. The role of the algebra of differential forms is played by the graded differential algebra C(sl(n,C),Mn (C))=Mn (C)⊗Λsl(n,C)*,sl(n,C) acting by inner derivations on Mn (C).
Dubois-Violette, Michel +2 more
openaire +3 more sources
Differential geometry on Grassmann algebras
Letters in Mathematical Physics, 1976H. C. Lee [1] developed the analogue of Riemannian geometry on a real symplectic manifold — the fundamental skew two-form taking the place of the symmetric tensor. The usual Riemannian concepts do not adapt themselves very well, thus ‘curvature’ is represented by a tensor of the third rank and ‘Killing's equations’ now involve this ‘curvature tensor ...
openaire +3 more sources
Differential algebra (contravariant analytic methods in differential geometry) [PDF]
The problems of developing the apparatus of differential-geometric investigations based on the calculus of differential operators on bundles of semiholonomic jets of Ehresmann are considered.
openaire +2 more sources
Numerical Algebraic Geometry and Differential Equations [PDF]
In this paper we review applications of numerical algebraic geometry to differential equations. The techniques we address are direct solution, bootstrapping by filtering, and continuation and bifurcation. We review differential equations systems with multiple solutions and bifurcations.
Bei Hu, Wenrui Hao, Andrew J. Sommese
openaire +1 more source
Topological algebras and abstract differential geometry
Journal of Mathematical Sciences, 1999The notions of connection and curvature on principal sheaves, with structural sheaf the sheaf of groups \({\mathcal G}{\mathcal L}(n, {\mathcal A})\), are studied where \({\mathcal A}\) is a sheaf of unital, commutative and associative algebras. Suitable topological algebras provide concrete models of principal sheaves for which an abstract Frobenius ...
openaire +3 more sources
Algebraic geometry of Abel differential equation
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012A solution $$y(x)$$ of an Abel differential equation $$(1) \ y^{\prime }=p(x)y^2 + q(x) y^3$$ is called “closed” on
Clara Shikhelman +3 more
openaire +2 more sources
Differential forms in algebraic geometry
2011Before considering more general spaces we shall first discuss (1) the r-dimensional projective space Π r . In this space we shall consider a homogeneous coordinate system (Z0, Z1, ... , Z r ). Let U α be that part of Π r in which Z α ≠ 0. In U α we may then introduce non-homogeneous coordinates zαi = Zι/Zα (ι≠α).
openaire +3 more sources
An algebraic model of almost transitive differential geometry
Mathematical Notes, 1993The author develops an interesting algebraic model for the theory of \(G\)- structures whose Lie algebra of infinitesimal automorphisms is transitive. Some ideas of the author's approach are analogous to the theory of filtered Lie algebras described by \textit{V. W. Guillemin} and \textit{S. Sternberg} [Bull. Am. Math. Soc.
openaire +3 more sources

