Results 41 to 50 of about 154,581 (190)
Nontriviality of rings of integral‐valued polynomials
Abstract Let S$S$ be a subset of Z¯$\overline{\mathbb {Z}}$, the ring of all algebraic integers. A polynomial f∈Q[X]$f \in \mathbb {Q}[X]$ is said to be integral‐valued on S$S$ if f(s)∈Z¯$f(s) \in \overline{\mathbb {Z}}$ for all s∈S$s \in S$. The set IntQ(S,Z¯)${\mathrm{Int}}_{\mathbb{Q}}(S,\bar{\mathbb{Z}})$ of all integral‐valued polynomials on S$S ...
Giulio Peruginelli, Nicholas J. Werner
wiley +1 more source
Vladimirov–Pearson operators on ζ$\zeta$‐regular ultrametric Cantor sets
Abstract A new operator for certain types of ultrametric Cantor sets is constructed using the measure coming from the spectral triple associated with the Cantor set, as well as its zeta function. Under certain mild conditions on that measure, it is shown that it is an integral operator similar to the Vladimirov–Taibleson operator on the p$p$‐adic ...
Patrick Erik Bradley
wiley +1 more source
Differential Galois Theory and Hopf Algebras for Lie Pseudogroups [PDF]
J.-F. Pommaret
openalex +1 more source
Chebotarev's theorem for cyclic groups of order pq$pq$ and an uncertainty principle
Abstract Let p$p$ be a prime number and ζp$\zeta _p$ a primitive p$p$th root of unity. Chebotarev's theorem states that every square submatrix of the p×p$p \times p$ matrix (ζpij)i,j=0p−1$(\zeta _p^{ij})_{i,j=0}^{p-1}$ is nonsingular. In this paper, we prove the same for principal submatrices of (ζnij)i,j=0n−1$(\zeta _n^{ij})_{i,j=0}^{n-1}$, when n=pr ...
Maria Loukaki
wiley +1 more source
A note on the cohomology of moduli spaces of local shtukas
Abstract We study localized versions of spectral action of Fargues–Scholze, using methods from higher algebra. As our main motivation and application, we deduce a formula for the cohomology of moduli spaces of local shtukas under certain genericity assumptions, and discuss its relation with the Kottwitz conjecture.
David Hansen, Christian Johansson
wiley +1 more source
Iitaka fibrations and integral points: A family of arbitrarily polarized spherical threefolds
Abstract Studying Manin's program for a family of spherical log Fano threefolds, we determine the asymptotic number of integral points whose height associated with an arbitrary ample line bundle is bounded. This confirms a recent conjecture by Santens and sheds new light on the logarithmic analog of Iitaka fibrations, which have not yet been adequately
Ulrich Derenthal, Florian Wilsch
wiley +1 more source
The m$m$‐step solvable anabelian geometry of mixed‐characteristic local fields
Abstract Let K$K$ be a mixed‐characteristic local field. For an integer m⩾0$m \geqslant 0$, we denote by Km/K$K^m / K$ the maximal m$m$‐step solvable extension of K$K$, and by GKm$G_K^m$ the maximal m$m$‐step solvable quotient of the absolute Galois group GK$G_K$ of K$K$.
Seung‐Hyeon Hyeon
wiley +1 more source
Minimal projective varieties satisfying Miyaoka's equality
Abstract In this paper, we establish a structure theorem for a minimal projective klt variety X$X$ satisfying Miyaoka's equality 3c2(X)=c1(X)2$3c_2(X) = c_1(X)^2$. Specifically, we prove that the canonical divisor KX$K_X$ is semi‐ample and that the Kodaira dimension κ(KX)$\kappa (K_X)$ is equal to 0, 1, or 2. Furthermore, based on this abundance result,
Masataka Iwai +2 more
wiley +1 more source
Liouvillian propagators, Riccati equation and differential Galois theory [PDF]
In this paper a Galoisian approach to build propagators through Riccati equations is presented. The main result corresponds to the relationship between the Galois integrability of the linear Schr dinger equation and the virtual solvability of the differential Galois group of its associated characteristic equation.
Acosta-Humánez, Primitivo B. +1 more
openaire +2 more sources
Symmetric products and puncturing Campana‐special varieties
Abstract We give a counterexample to the Arithmetic Puncturing Conjecture and Geometric Puncturing Conjecture of Hassett–Tschinkel using symmetric powers of uniruled surfaces, and propose a corrected conjecture inspired by Campana's conjectures on special varieties.
Finn Bartsch +2 more
wiley +1 more source

