Results 191 to 200 of about 2,832,353 (335)

Tin‐Based 2D/3D Perovskite Vertical Heterojunction for High‐Performance Synaptic Phototransistors

open access: yesAdvanced Functional Materials, EarlyView.
Phototransistors based on tin‐based 2D/3D perovskite heterostructures show an ultrahigh responsivity and detectivity at a low gate voltage across a broad wavelength region from ultraviolet to near‐infrared. The devices can replicate neuromorphic learning and remembering behaviors to light stimuli, in addition to electric depression and memory erasure ...
Hok‐Leung Loi   +10 more
wiley   +1 more source

A Close Look at the Local Structure of Functional Polymers: The Example of Poly(Vinylidene Fluoride)

open access: yesAdvanced Functional Materials, EarlyView.
To accurately develop structure‐property relationships in functional macromolecules, it is increasingly important to consider the local chain arrangement in addition to long‐range order. It is demonstrated in the case of poly(vinylidene fluoride) that solid‐state nuclear magnetic resonance (NMR) spectroscopy can provide detailed insights into the local
Henry J. Kantrow   +6 more
wiley   +1 more source

Multi‐Scaled Cellulosic Nanonetworks from Tunicates

open access: yesAdvanced Functional Materials, EarlyView.
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj   +10 more
wiley   +1 more source

PMD5 TRACING THE DIFFUSION OF COST-UTILITY ANALYSIS AS AN INNOVATION

open access: bronze, 2004
SS Sonnad   +5 more
openalex   +1 more source

Artificial Modulation of the Hydrogen Evolution Reaction Kinetics via Control of Grain Boundaries Density in Mo2C Through Laser Processing

open access: yesAdvanced Functional Materials, EarlyView.
A laser‐driven strategy enables precise microstructural modulation of Mo₂C, achieving nanoscale grain control (15.6 ± 5 nm) and an ultrahigh grain boundary density (130 µm−1). Moreover, high‐angle grain boundaries enhance active sites, facilitate electron transport, and optimize hydrogen adsorption kinetics, significantly reducing overpotential.
Seok‐Ki Hyeong   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy