Results 271 to 280 of about 1,144,886 (364)

Tailoring a Functional Synthetic Microbial Community Alleviates Fusobacterium nucleatum‐infected Colorectal Cancer via Ecological Control

open access: yesAdvanced Science, EarlyView.
The bottom‐up strategy based on multiomics data is used for the SynCom design, and it successfully inhibited F. nucleatum growth and achieved stable colonization in vivo. In addition, it promoted tryptophan metabolism and secondary bile acid conversion, reduced lipid accumulation, relieved microbiome disorder, decreased inflammatory reaction, and ...
Zhongkun Zhou   +11 more
wiley   +1 more source

The Nuclear Localization of ACLY Guards Early Embryo Development Through Recruiting P300 and HAT1 to Promote Histone Acetylation and Transcription

open access: yesAdvanced Science, EarlyView.
ACLY is vital for early embryo development. IGF‐1 activates AKT to phosphorylate ACLY, driving its nuclear localization and recruitment of HATs (P300/HAT1), boosting acetyl‐CoA production and histone acetylation for transcriptional activation. Conversely, ACLY deficiency (via knockdown, knockout, or AKT inhibition) reduces nuclear acetyl‐CoA, disrupts ...
Yerong Ma   +18 more
wiley   +1 more source

piR‐RCC Suppresses Renal Cell Carcinoma Progression by Facilitating YBX‐1 Cytoplasm Localization

open access: yesAdvanced Science, EarlyView.
PIWI‐interacting RNAs (piRNAs), a novel category of small non‐coding RNAs, have been implicated in the development of various diseases. This study explores the tumor‐suppressive mechanism of a downregulated piRNA (designated piR‐RCC) in renal cell carcinoma (RCC), and provides a delivery strategy targeting RCC tumor by constructing a cell membrane ...
Ruyue Wang   +16 more
wiley   +1 more source

Extramedullary Hematopoiesis in Gastric Mucosa. [PDF]

open access: yesDiagnostics (Basel)
Djolai M   +7 more
europepmc   +1 more source

Neuraminidase 1 Exacerbated Glycolytic Dysregulation and Cardiotoxicity by Destabilizing SIRT1 through Interactions with NRF2 and HIF1α

open access: yesAdvanced Science, EarlyView.
NEU1, a key regulator of glycolysis, is markedly upregulated following DOX treatment. This upregulation is attributed to HIF1α’s transcriptional repression, requiring intricate interactions with NRF2. Increased NEU1 facilitates SIRT1 lysosomal degradation, contributing to aberrant glycolytic phenotype and cardiac damage.
Ting Gao   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy