Results 241 to 250 of about 1,118,020 (296)

A Polymorphic Reconfigurable Multi‐Electrode Device Based on Electrically Bistable Nanostructured Metallic Films

open access: yesAdvanced Electronic Materials, EarlyView.
A polymorphic reconfigurable multi‐electrode device based on electrically bistable nanostructured metallic films. The adaptive reconfiguration properties of the nanostructured network under specific input voltages drive the reprogrammability of the device. This system can be employed for the implementation of polymorphic devices, which can be used both
Silvia Bressan   +4 more
wiley   +1 more source

Shedding Light on Common Misinterpretations in Photocatalyst Characterization

open access: yesAdvanced Energy Materials, EarlyView.
For heterogeneous semiconductor‐based photocatalysts, Marschall et al. highlight common misconceptions in material synthesis, characterization, and performance evaluation, together with detailed explanations on how to avoid them. The guidelines thus presented can help to improve reporting of photocatalyst performance in environmental applications, such
Roland Marschall   +2 more
wiley   +1 more source

Leveraging Digital Advanced Manufacturing to Enable Polymer Electrolyte Fuel Cells With Ultrahigh Gravimetric Power Density

open access: yesAdvanced Energy Materials, EarlyView.
This study employs digital advanced manufacturing to develop lightweight, compact porous distributors as alternatives to conventional bipolar plates in PEM fuel cells. A graphene‐coated nickel foam achieves a power density of 1.52 W cm−2, while titanium‐based designs deliver lightweight solutions: an LPBF‐fabricated Gyroid lattice reaches 1.36 W cm−2 ...
Hadi Heidary   +9 more
wiley   +1 more source

Safety of Sodium‐Ion Batteries: Evaluation and Perspective from Component Materials to Cells, Modules, and Packs

open access: yesAdvanced Energy Materials, EarlyView.
This review provides a bottom‐up evaluation of sodium‐ion battery safety, linking material degradation mechanisms, cell engineering parameters, and module/pack assembly. It emphasizes that understanding intrinsic material stability and establishing coordinated engineering control across hierarchical levels are vital for preventing degradation coupling ...
Won‐Gwang Lim   +5 more
wiley   +1 more source

How Particle Size Affects Consolidation Behavior, Strain and Properties of Li6PS5Cl Fast Ionic Conductors

open access: yesAdvanced Energy Materials, EarlyView.
The densification process of Li6PS5Cl powders with varying particles size distributions reveals differences in smaller and larger distributions. Higher strain is revealed for the smaller particle size distribution from X‐ray diffraction. Discrete element method simulations uncover that the reason for the higher strain is not the particle size itself ...
Vasiliki Faka   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy