Results 211 to 220 of about 30,727 (284)

Designing Defect Structure and Interfacial Strain in an Epitaxial VN Bilayer Film by Tailoring N Concentration

open access: yesAdvanced Materials Interfaces, EarlyView.
The N concentration in an epitaxial VN bilayer is tailored from overstoichiometric V0.49N0.51 to understoichiometric V0.56N0.44. Based on ab initio, diffraction, and microscopy data, the overstoichiometric V0.49N0.51 layer contains V vacancies, N Frenkel pairs, and a high density of dislocations.
Marcus Hans   +7 more
wiley   +1 more source

Risk, Gender, and Digital Finance

open access: yesFinance Research Letters
Fan Liu, Angela C. Lyons, Eddy S. Fang
openaire   +1 more source

Understanding the Dynamics of Nanoparticle Formation and Evolution in Functional Oxides via In Situ SAXS/WAXS

open access: yesAdvanced Materials Interfaces, EarlyView.
In situ SAXS/WAXS enables real‐time tracking of nanoparticle formation and evolution in exsolved and infiltrated Ni‐based perovskites under reducing conditions. The combined technique captures nucleation, growth, and coarsening dynamics with high temporal resolution, providing statistically robust insights into structural and morphological ...
Elena Vicente   +4 more
wiley   +1 more source

Nonmulberry Silk Fibroin Doping Boosts Charge Transfer and Charge Injection in Aligned Polypyrrole‐Silk Scaffolds for Low‐Voltage Neurostimulation

open access: yesAdvanced Materials Interfaces, EarlyView.
Conductive silk‐polypyrrole scaffolds couple redox stability with cell‐affinitive peptides present innately in an endogenous silk fibroin, enabling optimized electrical stimulation to drive neurite outgrowth. Findings establish electrochemical‐biological link for biomaterial design rules for smart nerve guidance conduits that can provide low voltage ...
Rajiv Borah   +5 more
wiley   +1 more source

Multi‐Material Gradient Printing Using Meniscus‐enabled Projection Stereolithography (MAPS)

open access: yesAdvanced Materials Technologies, Volume 10, Issue 6, March 18, 2025.
MAPS is a new vat‐free printing technique that utilizes programmed delivery of resin droplets with custom formulations to enable multi‐material gradient printing of 3D structures with user‐defined variations in mechanical stiffness, opacity, surface energy, cell densities, and magnetic properties. Abstract Light‐based additive manufacturing methods are
Puskal Kunwar   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy