Results 241 to 250 of about 4,315,310 (343)

Durable Physically Mixed Microporous and Mesoporous MOFs/Nanofiber Aerogel 3D Composites for Effective Toxic Gas Capture and Organophosphonate Detoxification

open access: yesAdvanced Functional Materials, EarlyView.
Ultralight 3D nanofibrous aerogels embedded with metal‐organic frameworks effectively capture and neutralize toxic gases and organophosphonates. Incorporating mesoporous UiO‐66‐NH2 and HKUST‐1 into PAN/PVP fibers enables high MOF loading while maintaining mechanical strength and structural stability.
Mai O. Abdelmigeed   +6 more
wiley   +1 more source

Nanomaterial‐Integrated Fiber Neural Probes for Deep Brain Monitoring and Modulation: Challenges and Opportunities

open access: yesAdvanced Functional Materials, EarlyView.
The article presents nanomaterial‐integrated fiber neural probes as innovative tools for deep brain molecular sensing, neural stimulation, and temperature monitoring. It examines breakthroughs in SERS‐based biomolecule detection, thermoplasmonic activation, and luminescent thermometry, alongside strategies to overcome stability, specificity, and ...
Di Zheng   +5 more
wiley   +1 more source

Radio frequency digital-to-analog converter

open access: green, 2004
S. Luschas   +2 more
openalex   +2 more sources

Full‐Spectrum Solar Harvesting and Desalination Enabled by Supra‐Nano Amorphous Ruthenium Dioxide – Mineral Composites

open access: yesAdvanced Functional Materials, EarlyView.
A mineral‐based supra‐nano amorphous ruthenium dioxide composite (a‐Ru0.5‐AM) was designed, achieving 97% broadband solar absorption. Under one sun, it reaches 87.91 ± 0.32 °C with a distinct thermal buffering effect that favors thermal confinement.
Yunchen Long   +13 more
wiley   +1 more source

The Solar Probe Plus Radio Frequency Spectrometer: Measurement requirements, analog design, and digital signal processing

open access: yes, 2017
M. Pulupa   +13 more
semanticscholar   +1 more source

Charge‐Induced Morphing Gels for Bioinspired Actuation

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel electroactive actuation mechanism that enables the gel material to generate substantial and reversible shape‐changing while preserving topological and isochoric (volumetric) equivalence. The resultant morphing behaviors can mimic the movements of muscle‐driven organelles in nature, including cilia‐like beating and ...
Ciqun Xu   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy