Results 121 to 130 of about 57,191 (263)

Digital Rights Management

open access: green, 2011
Reihaneh Safavi–Naini   +1 more
openalex   +2 more sources

Wetting Interactions Between Porous Carbon Hosts and Liquid Sodium‐Potassium Alloys Toward Their Use in Negative Electrodes of Alkali‐Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Porous carbon host materials are investigated for their possible usage in liquid alkali‐metal negative electrodes. X‐ray computed tomography reveals pore‐filling behavior under various conditions: non‐wetting, forced wetting, and spontaneous wetting. The applicability of porous carbon in electrochemical cells is demonstrated at high areal capacities ...
Johannes Baller   +10 more
wiley   +1 more source

Whose game is it anyway? Palworld and the new frontier of intellectual property in eSports. [PDF]

open access: yesFront Sports Act Living
Vargas-Chaves I   +3 more
europepmc   +1 more source

Real‐Time, Label‐Free Monitoring of Cell Behavior on a Bioelectronic Scaffold

open access: yesAdvanced Functional Materials, EarlyView.
A bioelectronic nanofibrous scaffold is introduced that supports cell growth while enabling real‐time, label‐free monitoring of cellular behavior through impedance measurements. The system correlates electrical signals with cell viability and surface coverage, offering an integrated platform for studying dynamic biological processes and advancing next ...
Dana Cohen‐Gerassi   +10 more
wiley   +1 more source

An Ionic Gelation Powder for Ultrafast Hemostasis and Accelerated Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
An ultrafast ionic gelation‐activated hemostatic powder (AGCL) forms a hydrogel within ≈1 s upon contact with blood‐derived calcium ions. The AGCL powder enables rapid hemorrhage control, strong tissue adhesion, and enhanced healing. The powder's pre‐crosslinked polymer network ensures high blood uptake and stability, offering effective treatment for ...
Youngju Son   +12 more
wiley   +1 more source

Photothermal Macroporous Lignin Cryogels for Off‐Grid, Continuous Atmospheric Water Collection via Interlayer Heat Recovery

open access: yesAdvanced Functional Materials, EarlyView.
Photothermal, macroporous lignin‐based cryogels are engineered to convert sunlight into low‐grade heat. Integrated as stacked beds in a drum‐type device, a thin copper interlayer transfers waste heat between beds, enabling interlayer heat recovery and continuous solar cycling.
Jie Yan   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy