Results 271 to 280 of about 3,545,090 (308)
Some of the next articles are maybe not open access.
L p –Solutions of Vector Refinement Equations with General Dilation Matrix
Acta Mathematica Sinica, English Series, 2005The purpose of this paper is to investigate the solutions of refinement equations of the form \[ \varphi(x)= \sum_{\alpha\in\mathbb{Z}^s}a(\alpha)\,\varphi(Mx-\alpha),\quad x\in\mathbb{R}^s, \] where the vector of functions \(\varphi= (\varphi_1,\dots,\varphi_r)^T\) is in \((L_p(\mathbb{R}^s))^r ...
Li, Song, Hu, Rueifang, Wang, Xiangqing
openaire +1 more source
Wheeler–DeWitt Equation with a Screened-Coulomb Dilation Potential
Few-Body Systems, 2013Wheeler–DeWitt equation for anisotropically expanding homogeneous high-dimension spaces is approximately solved under a screened-coulomb dilation potential via an appropriate approximation. The wave function is reported in terms of the Jacobi polynomials and eigenvalues and eigenfunctions are reported via the Nikiforov–Uvarov technique.
S. Zarrinkamar +2 more
openaire +1 more source
A characterization of dilatations and a functional equation
Journal of Geometry, 1984Verf. beweist: Es sei \(\sigma:{\mathbb{R}}^ 2\to {\mathbb{R}}^ 2\) eine Abbildung mit (1) Für alle \(p,q\in {\mathbb{R}}^ 2\) mit \((p-q)^ 2=1\) sind p-q und \(\sigma(p)-\sigma(q)\) linear abhängig. (2) Es gibt \(p_ 0\in {\mathbb{R}}^ 2\), so daß \(\sigma\) in \(p_ 0\) stetig ist. Dann ist \(\sigma\) eine Dilatation; d.h.
openaire +2 more sources
On the local properties of solutions of the nonlinear Beltrami equation
Journal of Mathematical Sciences, 2020R. Salimov, M. Stefanchuk
semanticscholar +1 more source
Remarks on L 1-solutions of dilation equations
aequationes mathematicae, 2006We give a condition under which the equation $$ f(x) = {\sum\limits_{n = 0}^N {C_{n} f{\left( {\alpha x - \beta _{n} } \right)}} } $$ has no non-trivial L 1-solution. Moreover, we show that the existence of non-trivial L
openaire +1 more source
Russian journal of mathematical physics, 2019
H. Srivastava, F. Shah, R. Abass
semanticscholar +1 more source
H. Srivastava, F. Shah, R. Abass
semanticscholar +1 more source
Dilation method and smoothing effects of solutions to the Benjamin–Ono equation
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1994N. Hayashi, Keiichi Kato, T. Ozawa
semanticscholar +1 more source
On the existence of irregular solutions of the two-coefficient dilation equation
, 2001J. Morawiec
semanticscholar +1 more source
Local decay in time of solutions to Schrödinger's equation with a dilation-analytic interaction
, 1978A. Jensen
semanticscholar +1 more source

