Results 271 to 280 of about 3,545,090 (308)
Some of the next articles are maybe not open access.

L p –Solutions of Vector Refinement Equations with General Dilation Matrix

Acta Mathematica Sinica, English Series, 2005
The purpose of this paper is to investigate the solutions of refinement equations of the form \[ \varphi(x)= \sum_{\alpha\in\mathbb{Z}^s}a(\alpha)\,\varphi(Mx-\alpha),\quad x\in\mathbb{R}^s, \] where the vector of functions \(\varphi= (\varphi_1,\dots,\varphi_r)^T\) is in \((L_p(\mathbb{R}^s))^r ...
Li, Song, Hu, Rueifang, Wang, Xiangqing
openaire   +1 more source

Wheeler–DeWitt Equation with a Screened-Coulomb Dilation Potential

Few-Body Systems, 2013
Wheeler–DeWitt equation for anisotropically expanding homogeneous high-dimension spaces is approximately solved under a screened-coulomb dilation potential via an appropriate approximation. The wave function is reported in terms of the Jacobi polynomials and eigenvalues and eigenfunctions are reported via the Nikiforov–Uvarov technique.
S. Zarrinkamar   +2 more
openaire   +1 more source

A characterization of dilatations and a functional equation

Journal of Geometry, 1984
Verf. beweist: Es sei \(\sigma:{\mathbb{R}}^ 2\to {\mathbb{R}}^ 2\) eine Abbildung mit (1) Für alle \(p,q\in {\mathbb{R}}^ 2\) mit \((p-q)^ 2=1\) sind p-q und \(\sigma(p)-\sigma(q)\) linear abhängig. (2) Es gibt \(p_ 0\in {\mathbb{R}}^ 2\), so daß \(\sigma\) in \(p_ 0\) stetig ist. Dann ist \(\sigma\) eine Dilatation; d.h.
openaire   +2 more sources

On the local properties of solutions of the nonlinear Beltrami equation

Journal of Mathematical Sciences, 2020
R. Salimov, M. Stefanchuk
semanticscholar   +1 more source

Remarks on L 1-solutions of dilation equations

aequationes mathematicae, 2006
We give a condition under which the equation $$ f(x) = {\sum\limits_{n = 0}^N {C_{n} f{\left( {\alpha x - \beta _{n} } \right)}} } $$ has no non-trivial L 1-solution. Moreover, we show that the existence of non-trivial L
openaire   +1 more source

Dilation method and smoothing effects of solutions to the Benjamin–Ono equation

Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1994
N. Hayashi, Keiichi Kato, T. Ozawa
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy