Results 191 to 200 of about 25,428 (269)

Preliminary Study of a Ninj1‐Loaded Bimodal Ultrasound/NIR Fluorescence Targeted Molecular Probe for Diagnosing Early‐Stage Inflammation in Coronary Microvascular Dysfunction

open access: yesAdvanced Healthcare Materials, EarlyView.
Coronary microvascular dysfunction (CMD) targeting remains a challenge for precise diagnosis. This work presents a dual‐modal nanoprobe (T‐IR780‐NBs) that combines ultrasound contrast with near‐infrared fluorescence. This technology utilizes proteomics‐derived antibodies that specifically localize to inflamed and injured cardiac tissue, enabling ...
Xiaohui Xu   +6 more
wiley   +1 more source

Expected Complexity of Barcode Reduction. [PDF]

open access: yesJ Appl Comput Topol
Giunti B, Houry G, Kerber M, Söls M.
europepmc   +1 more source

Biomimetic Fibrinogen Nanofiber Scaffolds for Vascular Hematopoietic Stem Cell Niche Engineering

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents an advanced in vitro model of the vascular hematopoietic stem cell niche using self‐assembled fibrinogen nanofibers, mimicking the basement membrane in bone marrow (BM) sinusoids. The model supports the coculture of microvascular endothelial cells, stromal cells, and hematopoietic stem and progenitor cells, providing insights into ...
Sophia Lena Meermeyer   +4 more
wiley   +1 more source

A Quantitative Printability Framework for Programmable Assembly of Pre‐Vascular Patterns via Laser‐Induced Forward Transfer

open access: yesAdvanced Healthcare Materials, EarlyView.
Laser‐Induced Forward Transfer (LIFT) is presented as a powerful micropatterning tool. An objective printability framework is developed to assess optimal printing parameter combinations. The technology is further explored for its ability to deterministically deposit microdroplets at predefined locations following CAD designs, enabling the patterning of
Cécile Bosmans   +8 more
wiley   +1 more source

Strontium‐Containing Bioactive Glass Nanoparticles Stimulate Osteogenesis and Suppress Osteoclast Formation in Co‐Culture

open access: yesAdvanced Healthcare Materials, EarlyView.
Spherical bioactive glass nanoparticles containing strontium inhibit osteoclast differentiation and activity, but promote osteoblast activity in osteoblast‐osteoclast in vitro co‐culture. The nanoparticles could be used for the treatment of osteoporosis.
Parichart Naruphontjirakul   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy