Results 31 to 40 of about 14,956 (174)
Inhomogeneous Khintchine–Groshev theorem without monotonicity
Abstract The Khintchine–Groshev theorem in Diophantine approximation theory says that there is a dichotomy of the Lebesgue measure of sets of ψ$\psi$‐approximable numbers, given a monotonic function ψ$\psi$. Allen and Ramírez removed the monotonicity condition from the inhomogeneous Khintchine–Groshev theorem for cases with nm⩾3$nm\geqslant 3$ and ...
Seongmin Kim
wiley +1 more source
A circle method approach to K‐multimagic squares
Abstract In this paper, we investigate K$K$‐multimagic squares of order N$N$. These are N×N$N \times N$ magic squares that remain magic after raising each element to the k$k$th power for all 2⩽k⩽K$2 \leqslant k \leqslant K$. Given K⩾2$K \geqslant 2$, we consider the problem of establishing the smallest integer N2(K)$N_2(K)$ for which there exist ...
Daniel Flores
wiley +1 more source
ABSTRACT As part of the efforts aimed at extending Painlevé and Gambier's work on second‐order equations in one variable to first‐order ones in two, in 1981, Bureau classified the systems of ordinary quadratic differential equations in two variables which are free of movable critical points (which have the Painlevé Property).
Adolfo Guillot
wiley +1 more source
K‐stable Fano threefolds of rank 2 and degree 28
Abstract Moduli spaces of Fano varieties have historically been difficult to construct. However, recent work has shown that smooth K‐polystable Fano varieties of fixed dimension and volume can be parametrised by a quasi‐projective moduli space. In this paper, we prove that all smooth Fano threefolds with Picard rank 2 and degree 28 are K‐polystable ...
Joseph Malbon
wiley +1 more source
ABSTRACT Integer and modular arithmetic is a fundamental area of mathematics, with extensive applications in computer science, and is essential for cryptographic protocols, error correction, and algorithm efficiency. However, students often struggle to understand its abstract nature, especially when transitioning from theoretical knowledge to practical
Violeta Migallón +2 more
wiley +1 more source
Localized and Extended Phases in Square Moiré Patterns
Rotated superimposed lattices in two dimensions, the termed moiré patterns, represent a clear example of how the structure affects the physical properties of a particle moving on it. A robust numerical treatment of continuous and discrete models leads to confirm that while localized states result from angles that produce non‐commensurable lattices ...
C. Madroñero +2 more
wiley +1 more source
On a Problem in Diophantine Approximation [PDF]
We prove new results, related to the Littlewood and Mixed Littlewood conjectures in Diophantine approximation.Comment: 16 ...
Dimitrov, Evgeni, Sinai, Yakov
core
On an Erdős similarity problem in the large
Abstract In a recent paper, Kolountzakis and Papageorgiou ask if for every ε∈(0,1]$\epsilon \in (0,1]$, there exists a set S⊆R$S \subseteq \mathbb {R}$ such that |S∩I|⩾1−ε$\vert S \cap I\vert \geqslant 1 - \epsilon$ for every interval I⊂R$I \subset \mathbb {R}$ with unit length, but that does not contain any affine copy of a given increasing sequence ...
Xiang Gao +2 more
wiley +1 more source
Local spectral estimates and quantitative weak mixing for substitution Z${\mathbb {Z}}$‐actions
Abstract The paper investigates Hölder and log‐Hölder regularity of spectral measures for weakly mixing substitutions and the related question of quantitative weak mixing. It is assumed that the substitution is primitive, aperiodic, and its substitution matrix is irreducible over the rationals.
Alexander I. Bufetov +2 more
wiley +1 more source
Lattices in function fields and applications
Abstract In recent decades, the use of ideas from Minkowski's Geometry of Numbers has gained recognition as a helpful tool in bounding the number of solutions to modular congruences with variables from short intervals. In 1941, Mahler introduced an analogue to the Geometry of Numbers in function fields over finite fields.
Christian Bagshaw, Bryce Kerr
wiley +1 more source

