Results 111 to 120 of about 383,482 (348)
Optical Control of the Thermal Conductivity in BaTiO3
Light‐driven manipulation of thermal conductivity in archetypal ferroelectric, BaTiO3, offers a novel and effective approach for the dynamical control of the heat flux, with potential applications in thermal management and phonon‐based logic. Abstract Achieving dynamic control over thermal conductivity remains a formidable challenge in condensed matter
Claudio Cazorla+4 more
wiley +1 more source
Phosphorescent OLEDs suffer from efficiency roll‐off due to triplet‐polaron quenching (TPQ). This study demonstrates for a large set of host‐guest combinations a spectroelectrochemical method to measure the absorption of charged molecules, enabling determining TPQ Förster radii (2.5–4 nm) from the spectral overlap.
Stan E. A. Jaspars+5 more
wiley +1 more source
The sign of the dipole–dipole potential by axion exchange
We calculate a dipole-dipole potential between fermions mediated by a light pseudoscalar, axion, paying a particular attention to the overall sign. While the sign of the potential is physical and important for experiments to discover or constrain the axion coupling to fermions, there is often a sign error in the literature.
Fuminobu Takahashi+2 more
openaire +3 more sources
The PDEM‐based SIGPE provides a dynamic nanophase from Li+‐bridged molecular self‐association, enhancing electrochemical stability and facilitating uniform Li+ ion flux at the interface. This unique solvation structure results in a hetero species‐driven inorganic‐rich SEI and long‐term cycle stability, suggesting that a PFAS‐free Li+‐containing monomer
Susung Yun+5 more
wiley +1 more source
This study uncovers a new switching mechanism in HfO2 and ZrO2, where the absence of a non‐polar layer along the a‐direction induces interaction between polar layers. Consequently, the switching barriers for growth are lower than those for nucleation in this direction, leading to a size‐dependent coercive field that matches experimental observations ...
Kun Hee Ye+6 more
wiley +1 more source
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai+8 more
wiley +1 more source
Which Chromium–Sulfur Compounds Exist as 2D Material?
2D chromium sulfides synthesized using molecular beam epitaxy on graphene. Structural characterization reveals two novel 2D materials, Cr2S3‐2D, which lacks a direct bulk counterpart, and Cr223S${\rm Cr}_{2\frac{2}{3}}{\rm S}$4‐2D, a minimum thickness version of Cr5S6. However, attempts to synthesize CrS2 are unsuccessful. Both new 2D phases are stable
Affan Safeer+5 more
wiley +1 more source
A Dynamic Approach to the Lumped Impedance Representation of a Nanoparticle
Recent research on plasmonic nanoparticles have emphasized their use in the circuits and device-based applications by exploiting control of the plasmon resonance.
Ali Mahmood, Mehboob Alam, Yehia Massoud
doaj +1 more source
From Low Symmetry to High Dissymmetry: Chiral Plasmonic Films of Binary and Nanobipyramid Assemblies
This work develops highly dissymmetric chiral plasmonic thin films by helically assembling gold nano bipyramids within a liquid‐crystal template. Engineering of the chiroptical response is achieved by varying particle size and geometry, as well as preparing binary assemblies.
Martyna Wasiluk+10 more
wiley +1 more source
Low‐Loss Far‐Infrared Surface Phonon Polaritons in Suspended SrTiO3 Nanomembranes
The low‐loss, highly confined, and thickness‐tunable surface phonon polaritons are demonstrated in the far‐infrared regime within transferable freestanding SrTiO3 membranes, achieving high figures of merit comparable to the previous record values from the vdW materials.
Konnor Koons+8 more
wiley +1 more source