Results 171 to 180 of about 57,568 (302)

Rewriting Polymer Fate via Chemomechanical Coupling

open access: yesAdvanced Materials, EarlyView.
This work introduces a life‐like “living” polymer platform that can grow, degrow, and reprogram its properties after fabrication. By integrating mass transport, reversible polymerization, and controlled catalysis, the material achieves on‐demand changes in size, shape, and mechanical properties.
Jiahe Huang   +9 more
wiley   +1 more source

Comparison of 16-Channel Asymmetric Sleeve Antenna and Dipole Antenna Transceiver Arrays at 10.5 Tesla MRI. [PDF]

open access: yesIEEE Trans Med Imaging, 2021
Woo MK   +9 more
europepmc   +1 more source

Breaking the 2‐nm Barrier in Hard Disk Drives Using Monolayer Amorphous Carbon Overcoats

open access: yesAdvanced Materials, EarlyView.
The rapid growth of AI has increased demand for large‐scale data storage, making HDDs indispensable in data centers. Increasing areal storage density is crucial, but limited by the traditional carbon overcoats (COC). Monolayer amorphous carbon (MAC) offers a superior alternative.
Hongji Zhang   +15 more
wiley   +1 more source

Self‐Assembled Monolayers in p–i–n Perovskite Solar Cells: Molecular Design, Interfacial Engineering, and Machine Learning–Accelerated Material Discovery

open access: yesAdvanced Materials, EarlyView.
This review highlights the role of self‐assembled monolayers (SAMs) in perovskite solar cells, covering molecular engineering, multifunctional interface regulation, machine learning (ML) accelerated discovery, advanced device architectures, and pathways toward scalable fabrication and commercialization for high‐efficiency and stable single‐junction and
Asmat Ullah, Ying Luo, Stefaan De Wolf
wiley   +1 more source

Beyond Earth: Resilience of Quasi‐2D Perovskite Solar Cells in Space

open access: yesAdvanced Materials, EarlyView.
In the article (DOI: 10.1002/adma.202520433), Christoph Putz and co‐workers demonstrate rigid quasi‐2D perovskite solar cells operating in low Earth orbit, delivering stable power for more than 100 days under real‐space conditions. In‐orbit performance is correlated with extensive ground‐based thermal and proton‐irradiation studies on rigid and ...
Christoph Putz   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy