Results 151 to 160 of about 456,488 (357)
SI: disaster risk management [PDF]
Marc Goerigk, HorstW. Hamacher
openaire +2 more sources
Urban Diagnosis as a Methodology of Integrated Disaster Risk Management [PDF]
本研究は、京都大学防災研究所21世紀 COE研究プロジェクトの一環で旧総合防災研究グループが2005年度に行った研究成果の概要をとりとめたものである。 本研究活動全体の主たる目的は総合的な災害リスクマネジメントのための方法論として、都市診断技法を開発し、発展させることである。すなわち、災害リスクマネジメント(災害リスクガバナンス、参加型災害リスクマネジメント)、都市空間の安全制御、地域水環境システム、防災社会システムの4つの研究課題を取り上げた。 五層モデルを用いて各研究の位置づけを示すとともに ...
多々納, 裕一 +5 more
core
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Natural Disaster Public Opinion Risk Management Based on Fuzzy Theory [PDF]
Liu, Rong, Liu, Yan
openalex +1 more source
Digital Agriculture: Past, Present, and Future
Digital agriculture integrates Internet of Things, artificial intelligence, and blockchain to enhance efficiency and sustainability in farming. This review outlines its evolution, current applications, and future directions, highlighting both technological advances and key challenges for global implementation.
Xiaoding Wang +3 more
wiley +1 more source
Earth Observation Contribution to Cultural Heritage Disaster Risk Management: Case Study of Eastern Mediterranean Open Air Archaeological Monuments and Sites [PDF]
Άθως Αγαπίου +2 more
openalex +1 more source
This article reviews the current state of bioinspired soft robotics. The article discusses soft actuators, soft sensors, materials selection, and control methods used in bioinspired soft robotics. It also highlights the challenges and future prospects of this field.
Abhirup Sarker +2 more
wiley +1 more source
NTT Group's Risk Management and Disaster Prevention Solutions and R&D Initiatives [PDF]
Takashi Ohyama +4 more
openalex +1 more source
This study presents a multitask strategy for plastic cleanup with autonomous surface vehicles, combining exploration and cleaning phases. A two‐headed Deep Q‐Network shared by all agents is traineded via multiobjective reinforcement learning, producing a Pareto front of trade‐offs.
Dame Seck +4 more
wiley +1 more source

