Results 131 to 140 of about 6,511 (198)
Manipulating Ferroelectric Topological Polar Structures with Twisted Light
We demonstrate dynamic control of ferroelectric order in quasi‐2D CsBiNb2O7 using twisted ultraviolet light carrying orbital angular momentum. Our approach harnesses non‐resonant multiphoton absorption and induced strain to modulate topological of ferroelectric polarization textures.
Nimish P. Nazirkar+10 more
wiley +1 more source
Rational semimodules over the max-plus semiring and geometric approach of discrete event systems
Stéphane Gaubert, Ricardo D. Katz
openalex +2 more sources
Nonlocal Conduction in a Metawire
A 1D metawire composed of twisted copper wires is designed and realized. This metamaterial exhibits pronounced effects of nonlocal electric conduction according to Ohm's law. The current at one location not only depends on the electric field at that location but also on other locations.
Julio Andrés Iglesias Martínez+3 more
wiley +1 more source
State‐of‐the‐Art, Insights, and Perspectives for MOFs‐Nanocomposites and MOF‐Derived (Nano)Materials
Different approaches to MOF‐NP composite formation, such as ship‐in‐a‐bottle, bottle‐around‐the‐ship and in situ one‐step synthesis, are used. Owing to synergistic effects, the advantageous features of the components of the composites are beneficially combined, and their individual drawbacks are mitigated.
Stefanos Mourdikoudis+6 more
wiley +1 more source
Discrete event systems with stochastic processing times
Geert Jan Olsder+4 more
openalex +2 more sources
Van Der Waals Hybrid Integration of 2D Semimetals for Broadband Photodetection
Advanced broadband photodetector technologies are essential for military and civilian applications. 2D semimetals, with their gapless band structures, high mobility, and topological protection, offer great promise for broadband PDs. This study reviews the latest advancements in broadband PDs utilizing heterostructures that combine 2D semimetals with ...
Xue Li+9 more
wiley +1 more source
Machine‐Learning‐Aided Advanced Electrochemical Biosensors
Electrochemical biosensors are highly sensitive, portable, and versatile. Advanced nanomaterials enhance their performance, while machine learning (ML) improves data analysis, minimizes interference, and optimizes sensor design. Despite progress in both fields, their combined potential in diagnostics remains underexplored.
Andrei Bocan+9 more
wiley +1 more source
Reversible protonic ceramic electrochemical cells (R‐PCECs) face challenges from sluggish and unstable oxygen reduction and evolution reactions in the air electrode. This review discusses recent progress in triple‐conducting air electrodes, emphasizing mechanisms, performance factors, and design strategies, offering guidance for creating efficient and ...
Xi Chen+8 more
wiley +1 more source
Supervisory Control of Discrete Event Systems based on a Reinforcement Learning
Tatsushi Yamasaki, Toshimitsu Ushio
openalex +2 more sources
An overview is provided of the mechanochemistry of metal‐organic frameworks (MOFs) and covalent‐organic frameworks (COFs), highlighting opportunities and strategies for discovery, synthesis and reactivity studies of these materials. Mechanistic studies and comparisons to the mechanochemistry of organic solids are outlined, showcasing how advances in ...
Joseph M. Marrett+3 more
wiley +1 more source