Results 201 to 210 of about 680,508 (291)

Toward Capacitive In‐Memory‐Computing: A Device to Systems Level Perspective on the Future of Artificial Intelligence Hardware

open access: yesAdvanced Intelligent Discovery, EarlyView.
Capacitive, charge‐domain compute‐in‐memory (CIM) stores weights as capacitance,eliminating DC sneak paths and IR‐drop, yielding near‐zero standbypower. In this perspective, we present a device to systems level performance analysis of most promising architectures and predict apathway for upscaling capacitive CIM for sustainable edge computing ...
Kapil Bhardwaj   +2 more
wiley   +1 more source

Comparison of DeePMD, MTP, GAP, ACE and MACE Machine‐Learned Potentials for Radiation‐Damage Simulations: A User Perspective

open access: yesAdvanced Intelligent Discovery, EarlyView.
The authors evaluated six machine‐learned interatomic potentials for simulating threshold displacement energies and tritium diffusion in LiAlO2 essential for tritium production. Trained on the same density functional theory data and benchmarked against traditional models for accuracy, stability, displacement energies, and cost, Moment Tensor Potential ...
Ankit Roy   +8 more
wiley   +1 more source

Interpretability and Representability of Commutative Algebra, Algebraic Topology, and Topological Spectral Theory for Real‐World Data

open access: yesAdvanced Intelligent Discovery, EarlyView.
This article investigates how persistent homology, persistent Laplacians, and persistent commutative algebra reveal complementary geometric, topological, and algebraic invariants or signatures of real‐world data. By analyzing shapes, synthetic complexes, fullerenes, and biomolecules, the article shows how these mathematical frameworks enhance ...
Yiming Ren, Guo‐Wei Wei
wiley   +1 more source

Machine Learning Driven Inverse Design of Broadband Acoustic Superscattering

open access: yesAdvanced Intelligent Discovery, EarlyView.
Multilayer acoustic superscatterers are designed using machine learning to achieve broadband superscattering and strong sound insulation. By incorporating a weighted mean absolute error into the loss function, the forward and inverse neural networks accurately map structural parameters to spectral responses.
Lijuan Fan, Xiangliang Zhang, Ying Wu
wiley   +1 more source

Home - About - Disclaimer - Privacy