Results 21 to 30 of about 73,122 (279)
This review discusses the use of Surface‐Enhanced Raman Spectroscopy (SERS) combined with Artificial Intelligence (AI) for detecting antimicrobial resistance (AMR). Various SERS studies used with AI techniques, including machine learning and deep learning, are analyzed for their advantages and limitations.
Zakarya Al‐Shaebi+4 more
wiley +1 more source
Coherent Dynamics of Quantum Systems with Non-Uniform Fourier Space Excited by Laser Radiation
The algorithm is presented to solve dynamical equations for excitation of molecular models with multiple energy levels. It uses only discrete structures: discrete orthogonal polynomials constructed specially in Fourier space of the probability amplitudes,
Sary Banjak , Vadim Savva
doaj +1 more source
This paper studies a new family of Angelesco multiple orthogonal polynomials with shared orthogonality conditions with respect to a system of weight functions, which are complex analogs of Pascal distributions on a legged star-like set.
Jorge Arvesú+1 more
doaj +1 more source
Discrete semiclassical orthogonal polynomials of class one [PDF]
26 ...
Francisco Marcellán, Diego Dominici
openaire +6 more sources
Discrete orthogonal polynomials on equidistant nodes [PDF]
In this paper we give an alternative and, in our opinion, more simple proof for the orthonormal discrete polynomials on a set of equidistant nodes. Such a proof provides a unifying explicit formulation of discrete orthonormal polynomials on an equidistant grid and an explicit formula for the coefficients of the “three-term recurrence relation”. We show
Eisinberg A, FEDELE, Giuseppe
openaire +2 more sources
Extensions of discrete classical orthogonal polynomials beyond the orthogonality
It is well known that the family of Hahn polynomials $\{h_n^{ , }(x;N)\}_{n\ge 0}$ is orthogonal with respect to a certain weight function up to $N$. In this paper we present a factorization for Hahn polynomials for a degree higher than $N$ and we prove that these polynomials can be characterized by a $ $-Sobolev orthogonality.
Costas-Santos, Roberto S.+1 more
openaire +4 more sources
Discrete Transforms and Orthogonal Polynomials of (Anti)symmetric Multivariate Sine Functions
Sixteen types of the discrete multivariate transforms, induced by the multivariate antisymmetric and symmetric sine functions, are explicitly developed. Provided by the discrete transforms, inherent interpolation methods are formulated.
Adam Brus+2 more
doaj +1 more source
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator,
Juan F. Mañas-Mañas+2 more
doaj +1 more source
Gottlieb Polynomials and Their q-Extensions
Since Gottlieb introduced and investigated the so-called Gottlieb polynomials in 1938, which are discrete orthogonal polynomials, many researchers have investigated these polynomials from diverse angles.
Esra ErkuŞ-Duman, Junesang Choi
doaj +1 more source
In this contribution we consider sequences of monic polynomials orthogonal with respect to the Sobolev-type inner product f,g=⟨uM,fg⟩+λTjf(α)Tjg(α), where uM is the Meixner linear operator, λ∈R+, j∈N, α≤0, and T is the forward difference operator Δ or ...
Roberto S. Costas-Santos+2 more
doaj +1 more source