Results 251 to 260 of about 21,346 (310)
Machine learning predicts activation energies for key steps in the water‐gas shift reaction on 92 MXenes. Random Forest is identified as the most accurate model. Reaction energy and reactant LogP emerge as key descriptors. The approach provides a predictive framework for catalyst design, grounded in density functional theory data and validated through ...
Kais Iben Nassar +3 more
wiley +1 more source
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian +12 more
wiley +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source
Flexible tactile sensors have considerable potential for broad application in healthcare monitoring, human–machine interfaces, and bioinspired robotics. This review explores recent progress in device design, performance optimization, and intelligent applications. It highlights how AI algorithms enhance environmental adaptability and perception accuracy
Siyuan Wang +3 more
wiley +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Discrete Lattice Wavelet Transform
IEEE Transactions on Circuits and Systems II: Express Briefs, 2007The discrete wavelet transform (DWT) has gained a wide acceptance in denoising and compression coding of images and signals. In this work we introduce a discrete lattice wavelet transform (DLWT). In the analysis part, the lattice structure contains two parallel transmission channels, which exchange information via two crossed lattice filters.
Olkkonen, H., Olkkonen, Juuso
openaire +3 more sources
Discrete Wavelets and Fast Wavelet Transform
1991The wavelet analysis, introduced by J. MORLET and Y. MEYER in the middle of the eighties, is a processus of time-frequency (or time-scale) analysis which consists of decomposing a signal into a basis of functions (o jk ) called wavelets. These wavelets are in turn deduced from the analyzing wavelet o by dilatations and translations. More precisely:
Bonnet, Pierre, Rémond, Didier
openaire +2 more sources
Hardware implementation of Discrete Wavelet Transform and Inverse Discrete Wavelet Transform on FPGA
2010 IEEE 18th Signal Processing and Communications Applications Conference, 2010In this paper, hardware implementation of the Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT) based on FPGA is explained. DWT and IDWT algorithms are implemented on the Altera Cyclone-II FPGA. Filtering processes of rows and columns are seriatim applied as in level-by-level architecture. But both addressing for read/write
Çavuşlu, Mehmet Ali, Karakaya, Fuat
openaire +2 more sources

