Results 111 to 120 of about 479,852 (230)

Harnessing Outer Space for Improved Electrocaloric Cooling

open access: yesAdvanced Functional Materials, EarlyView.
A novel radiative heat sink/source‐integrated electrocaloric (R‐iEC) system combines the electrocaloric (EC) effect with a thermally conductive radiative cooler (TCRC) to address heat dissipation limitations in EC devices. Utilizing outer space as a heat sink, the system achieves up to 240 W m−2 of heat dissipation performance, making it highly ...
Dong Hyun Seo   +8 more
wiley   +1 more source

Toward Architected Microstructures Using Advanced Laser Beam Shaping in Laser Powder Bed Fusion of Ti‐6Al‐4V

open access: yesAdvanced Functional Materials, EarlyView.
This research applies advanced laser beam shaping (LCoS‐SLM) to fabricate the Ti‐6Al‐4V alloy via laser powder bed fusion. A tailored beam is used to prevent martensite formation and create a dual α+β microstructure by controlling cooling rates.
Reza Esmaeilzadeh   +8 more
wiley   +1 more source

High‐Fidelity Directed Self‐Assembly Using Higher‐χ Polystyrene‐Block‐Poly(Methyl Methacrylate) Derivatives for Dislocation‐Free Sub‐10 nm Features

open access: yesAdvanced Functional Materials, EarlyView.
The relationship between primary polymer structure and pattern quality in the directed self‐assembly of chemically modified polystyrene‐block‐poly(methyl methacrylate) derivatives is explored. The perpendicular lamellae are aligned, with a periodicity below 20 nm. No parallel orientations or dislocations form, and line patterns are well defined over an
Shinsuke Maekawa   +8 more
wiley   +1 more source

Making Photoresponsive Metal–Organic Frameworks an Effective Class of Heterogeneous Photocatalyst

open access: yesAdvanced Functional Materials, EarlyView.
This review summarizes photoresponsive MOFs for photocatalytic applications, focusing on their capacity to enhance light harvesting, charge transfer, and surface reactions. While existing studies provide foundational insights, emerging characterization techniques enable a deeper understanding of photoresponsive MOFs.
Rui Liu   +3 more
wiley   +1 more source

Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity

open access: yesAdvanced Functional Materials, EarlyView.
A highly sensitive crack‐based sensor with tunable strain detection capabilities is demonstrated through controlled nanocrack formation in a line‐patterned shape memory polymer substrate. The sensor design integrates thermoplastic polyurethane and poly(lactic acid), enabling thermo‐responsive reconfiguration of crack geometry.
Seungjae Lee   +10 more
wiley   +1 more source

Artificial Modulation of the Hydrogen Evolution Reaction Kinetics via Control of Grain Boundaries Density in Mo2C Through Laser Processing

open access: yesAdvanced Functional Materials, EarlyView.
A laser‐driven strategy enables precise microstructural modulation of Mo₂C, achieving nanoscale grain control (15.6 ± 5 nm) and an ultrahigh grain boundary density (130 µm−1). Moreover, high‐angle grain boundaries enhance active sites, facilitate electron transport, and optimize hydrogen adsorption kinetics, significantly reducing overpotential.
Seok‐Ki Hyeong   +13 more
wiley   +1 more source

Patellofemoral Cartilage Degradation Based on T1ρ Relaxation Times Varies Inversely With BMI After Patellar Dislocation. [PDF]

open access: yesOrthop J Sports Med
Elias JJ   +7 more
europepmc   +1 more source

Scaling‐Up of Structural Superlubricity: Challenges and Opportunities

open access: yesAdvanced Functional Materials, EarlyView.
At increasing length‐scales, structural superlubricity (SSL) faces challenges from physical and chemical energy dissipation pathways. This study reviews recent experimental and theoretical progress on these challenges facing the scaling‐up of SSL, as well as perspectives on future directions for realizing and manipulating macroscale superlubricity ...
Penghua Ying   +4 more
wiley   +1 more source

Enhancing UV Stability and Charge Extraction in Organic Solar Cells with Phenyl‐Linked Aromatic Self‐Assembled Monolayer

open access: yesAdvanced Functional Materials, EarlyView.
The phenyl‐linked self‐assembled monolayer exhibits robust intrinsic stability and hole extraction capability compared to the alkyl‐linked counterparts, thus facilitating the device stability with T80 over 1000 h and efficiency of 19.7% in advancing organic solar cells.
Nan Zhang   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy